33 research outputs found

    Quantum Dots as Templates for Self-Assembly of Photoswitchable Polymers: Small, Dual-Color Nanoparticles Capable of Facile Photomodulation

    Get PDF
    A photomodulatable amphiphilic polymer has been synthesized with a backbone of poly[isobutylene-alt-maleic anhydride] and pendant dodecyl alkyl chains, Lucifer Yellow (LY) fluorescent probes, and diheteroarylethenes photochromic (PC) groups. The latter serve as reversible UV-activated FRET acceptors for the LY donors. We characterized the spectral and switching properties of the polymer in an organic solvent (CHCl₃). In an aqueous medium the polymer forms polymersomes, constituting fluorescence probes ∼75 nm in diameter. Self-assembly of the polymer on the surface of a quantum dot (QD) serving as a template creates a dual-color photoswitchable nanoparticle (psNP) with improved properties due to the increase in polymer density and efficiency of PC photoconversion. The psNP exhibits a second QD red emission band that functions as an internal standard requiring only a single excitation wavelength, and is much reduced in size (<20 nm diameter) compared to the polymersomes. The QD template also greatly increases the depth of modulation by photochromic FRET of the LY emission monitored by both steady-state and time-resolved (lifetime) fluorescence (from 20%→70%, and from 12%→55%, respectively).Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    A New Paradigm for MAPK: Structural Interactions of hERK1 with Mitochondria in HeLa Cells

    Get PDF
    Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells

    Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties

    Get PDF
    Photoswitchable fluorescent diheteroarylethenes are promising candidates for applications in super-resolution molecular localization fluorescence microscopy thanks to their high quantum yields and fatigue-resistant photoswitching characteristics. We have studied the effect of varying substituents on the photophysical properties of six sulfone derivatives of diheteroarylethenes, which display fluorescence in one (closed form) of two thermally stable photochromic states. Electron-donating substituents displace the absorption and emission spectra towards the red without substantially affecting the fluorescence quantum yields. Furthermore, ethoxybromo, a very electron-donating substituent, stabilizes the excited state of the closed isomer to the extent of almost entirely inhibiting its cycloreversion. Multi-parameter Hammett correlations indicate a relationship between the emission maxima and electron-donating character, providing a useful tool in the design of future photochromic molecules. Most of the synthesized compounds exhibit small bathochromic shifts and shorter fluorescence lifetimes with an increase in solvent polarity. However, the ethoxybromo-substituted fluorescent photochrome is unique in its strong solvatochromic behaviour, constituting a photoactivatable (photochromic), fluorescent and highly solvatochromic small organic compound. The Catalán formalism identified solvent dipolarity as the principal basis of the solvatochromism, reflecting the highly polarized nature of this molecule.Fil: Gillanders, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Max Planck Institute for Biophysical Chemistry. Laboratory of Cellular Dynamics; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Giordano, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Max Planck Institute for Biophysical Chemistry. Laboratory of Cellular Dynamics; AlemaniaFil: Diaz, Sebastian Andres. Max Planck Institute for Biophysical Chemistry. Laboratory of Cellular Dynamics; AlemaniaFil: Jovin, Tomás. Max Planck Institute for Biophysical Chemistry. Laboratory of Cellular Dynamics; AlemaniaFil: Jares, Elizabeth Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; Argentin

    Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of α-synuclein.

    Get PDF
    The deposition of fibrillar structures (amyloids) is characteristic of pathological conditions including Alzheimer's and Parkinson's diseases. The detection of protein deposits and the evaluation of their kinetics of aggregation are generally based on fluorescent probes such as thioflavin T and Congo red. In a search for improved fluorescence tools for studying amyloid formation, we explored the ability of N-arylaminonaphthalene sulfonate (NAS) derivatives to act as noncovalent probes of α-synuclein (AS) fibrillation, a process linked to Parkinson's disease and other neurodegenerative disorders. The compounds bound to fibrillar AS with micromolar K(d)s, and exhibited fluorescence enhancement, hyperchromism, and high anisotropy. We conclude that the probes experience a hydrophobic environment and/or restricted motion in a polar region. Time- and spectrally resolved emission intensity and anisotropy provided further information regarding structural features of the protein and the dynamics of solvent relaxation. The steady-state and time-resolved parameters changed during the course of aggregation. Compared with thioflavin T, NAS derivatives constitute more sensitive and versatile probes for AS aggregation, and in the case of bis-NAS detect oligomeric as well as fibrillar species. They can function in convenient, continuous assays, thereby providing useful tools for studying the mechanisms of amyloid formation and for high-throughput screening of factors inhibiting and/or reversing protein aggregation in neurodegenerative diseases

    New Algorithm to Determine True Colocalization in Combination with Image Restoration and Time-Lapse Confocal Microscopy to Map Kinases in Mitochondria

    Get PDF
    The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsońs correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images

    Endocytosis and Intracellular Dissociation Rates of Human Insulin–Insulin Receptor Complexes by Quantum Dots in Living Cells

    No full text
    Insulin signaling is involved in glucose metabolism, cellular growth, and differentiation. Its function is altered in diabetes and many cancer types. Insulin binding to insulin receptor (IR) triggers diverse signaling pathways. However, signal transduction by IR is not mediated exclusively at the cell surface. Activated ligand–receptor complexes are internalized into endosomes from which the IR recruits adapters acting on substrates that are distinct from those accessible at the membrane. We report the biotinylation of human-recombinant insulin (rhIns) specifically at the position 29 of the B chain. We combined visible fluorescent proteins fused to IR and biotinylated rhIns conjugated with streptavidin–quantum dots to perform extended, quantitative experiments in real time. Modified rhIns bound to the IR and conjugated with the quantum dots was internalized with a rate constant (<i>k</i>) of 0.009 min<sup>–1</sup>. Dissociation of insulin-IR complex in endocytosed vesicles occurred with <i>k</i> = 0.006 min<sup>–1</sup>
    corecore