1,183 research outputs found
Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony calibration with a contemporaneous seawater phosphate record
A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (PO4 SW) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panama were strongly correlated to a contemporaneous time-series record of surface water PO4 SW at this site (r2 = 0.7â0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in Âą0.2 and Âą0.1 lmol/kg uncertainties in PO4 SW reconstructions from P. lobata and P. gigantea, respectively.P/Ca Porites lobata (lmol/mol) = (21.1 ? 2.4)PO4 SW (lmol/kg) + (14.3 ? 3.8)P/Ca Pavona gigantea (lmol/mol) = (29.2 ? 1.4)PO4 SW (lmol/kg) + (33.4 ? 2.7)Inter-colony agreement in P/Ca response to PO4 SW was good (Âą5â12% about mean calibration slope), suggesting that species-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phosphate. However, offsets in the y-intercepts of calibration regressions among co-located individuals and taxa suggest that biologically-regulated âvital effectsâ and/or skeletal extension rate may also affect skeletal P incorporation. Quantification of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface water phosphate and regional calibration against documented local seawater phosphate variations
The role of pH up-regulation in response to nutrient-enriched, low-pH groundwater discharge
Highlights
⢠Dual geochemical approach using δ11B and B/Ca to evaluate coral calcifying fluids from West Maui, Hawai'i.
⢠NMR analysis confirms boron is present as borate with no evidence of boric acid inclusion.
⢠Increased pH up-regulation in corals exposed to high nutrient / low pH submarine groundwater discharge.
⢠Calcifying fluid aragonite saturate state 9 to 10 times higher than ambient seawater.
⢠Up-regulation as an internal coping mechanism to combat multiple stressors from land-based sources of pollution.
Coral reefs and their ecosystems are threatened by both global stressors, including increasing sea-surface temperatures and ocean acidification (OA), and local stressors such as land-based sources of pollution that can magnify the effects of OA. Corals can physiologically control the chemistry of their internal calcifying fluids (CF) and can thereby regulate their calcification process. Specifically, increasing aragonite saturation state in the CF (ΊCF) may allow corals to calcify even under external low saturation conditions. Questions remain regarding the physiological processes that govern the CF chemistry and how they change in response to multiple stressors. To address this knowledge gap, the boron systematics (δ11B and B/Ca) were analyzed in tropical corals, Porites lobata, collected at submarine groundwater seeps impacted by the release of treated wastewater in west Maui, Hawai'i, to document the interactions between high nutrient / low pH seep water on CF carbonate chemistry. Results show substantial up-regulation of pH and dissolved inorganic carbon (DIC) with respect to seawater in P. lobata corals collected from within the wastewater impacted area at Kahekili Beach Park compared to the control site at Olowalu Beach. The ΊCF was 9 to 10 times higher than ambient seawater Ί, and 13 to 26% higher than in corals from the control site and from previously observed in tropical Porites spp. corals. Such elevated up-regulation suggests that corals exposed to nutrient-enriched, low pH effluent sustain CF supersaturated with respect to aragonite, possibly as an internal coping mechanism to combat multiple stressors from land-based sources of pollution. This elevated up-regulation has implications to coral vulnerability to future climate- and ocean-change scenarios
Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), PaleoceneâEocene Thermal Maximum (PETM), and latest Paleocene
Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (âź57 to 48 million years ago) span a wide range (âź9 to 23ââC higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimental framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (âź57âMa), (2) the PaleoceneâEocene Thermal Maximum (PETM; 56âMa), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1âMa). Using six different methodologies, we find that the average GMST estimate (66â% confidence) during the latest Paleocene, PETM, and EECO was 26.3ââC (22.3 to 28.3ââC), 31.6ââC (27.2 to 34.5ââC), and 27.0ââC (23.2 to 29.7ââC), respectively. GMST estimates from the EECO are âź10 to 16ââC warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14ââC higher than pre-industrial). Leveraging the large âsignalâ associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that âbulkâ equilibrium climate sensitivity (ECS; 66â% confidence) during the latest Paleocene, PETM, and EECO is 4.5ââC (2.4 to 6.8ââC), 3.6ââC (2.3 to 4.7ââC), and 3.1ââC (1.8 to 4.4ââC) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5ââC per doubling CO2) but appear incompatible with low ECS values (<1.5 per doubling CO2)
An astronomically dated record of Earth's climate and its predictability over the last 66 million years.
Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics
Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate
The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2â4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500â3,000 parts per million5â7, and in the absence of tighter constraints carbonâclimate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8â11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11Î) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2â4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period
Alignment of the CMS silicon tracker during commissioning with cosmic rays
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3â4 microns RMS in the barrel and 3â14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
- âŚ