38 research outputs found

    GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health.

    Get PDF
    Funder: Department of HealthMosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes-CHEK2 and GIGYF1-reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04-11.81], p = 1.3 × 10-10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51-10.61], p = 1.8 × 10-12), 4 kg higher fat mass (p = 1.3 × 10-4), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10-4) and 4.5 kg lower handgrip strength (p = 4.7 × 10-7) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health

    The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

    Get PDF
    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.We thank members of the Cambridge BioResource Scientific Advisory Board and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is funded from the BLUEPRINT Grant Code HEALTH-F5-2011-282510 and the BHF Cambridge Centre of Excellence [RE/13/6/30180]. J.R.S. is funded by a MRC CASE Industrial studentship, co-funded by Pfizer. J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator. S.M., S.T, M.H, K.M. and L.D. are supported by the NIHR BioResource-Rare Diseases, which is funded by NIHR. Research in the Ouwehand laboratory is supported by program grants from the NIHR to W.H.O., the European Commission (HEALTH-F2-2012-279233), the British Heart Foundation (BHF) to W.J.A. and D.R. under numbers RP-PG-0310-1002 and RG/09/12/28096 and Bristol Myers-Squibb; the laboratory also receives funding from NHSBT. W.H.O is a NIHR Senior Investigator. The INTERVAL academic coordinating centre receives core support from the UK Medical Research Council (G0800270), the BHF (SP/09/002), the NIHR and Cambridge Biomedical Research Centre, as well as grants from the European Research Council (268834), the European Commission Framework Programme 7 (HEALTH-F2-2012-279233), Merck and Pfizer. DJR and DA were supported by the NIHR Programme ‘Erythropoiesis in Health and Disease’ (Ref. NIHR-RP-PG-0310-1004). N.S. is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). The INTERVAL study is funded by NHSBT and has been supported by the NIHR-BTRU in Donor Health and Genomics at the University of Cambridge in partnership with NHSBT. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health of England or NHSBT. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship

    Professional identity formation amongst peer-mentors in a research-based mentoring programme.

    Get PDF
    BackgroundMentoring plays a pivotal yet poorly understood role in shaping a physician's professional identity formation (PIF) or how they see, feel and act as professionals. New theories posit that mentoring nurtures PIF by functioning as a community of practice through its structured approach and its support of a socialisation process made possible by its assessment-directed personalized support. To test this theory and reshape the design, employ and support of mentoring programs, we evaluate peer-mentor experiences within the Palliative Medicine Initiative's structured research mentoring program.MethodsSemi-structured interviews with peer mentors under the Palliative Medicine Initiative (PMI) at National Cancer Centre Singapore were conducted and triangulated against mentoring diaries to capture longitudinal data of their PMI experiences. The Systematic Evidence-Based Approach (SEBA) was adopted to enhance the trustworthiness of the data. SEBA employed concurrent content and thematic analysis of the data to ensure a comprehensive review. The Jigsaw Perspective merged complementary themes and categories identified to create themes/categories. The themes/categories were compared with prevailing studies on mentoring in the Funnelling Process to reaffirm their accuracy.ResultsTwelve peer-mentors participated in the interviews and eight peer-mentors completed the mentoring diaries. The domains identified were community of practice and identity work.ConclusionsThe PMI's structured mentoring program functions as a community of practice supporting the socialisation process which shapes the peer-mentor's belief system. Guided by a structured mentoring approach, stage-based assessments, and longitudinal mentoring and peer support, peer-mentors enhance their detection and evaluation of threats to their regnant belief system and adapt their self-concepts of identity and personhood to suit their context. These insights will help structure and support mentoring programs as they nurture PIF beyond Palliative Medicine

    Assessing the effects of a mentoring program on professional identity formation.

    Get PDF
    BackgroundMedical education has enjoyed mixed fortunes nurturing professional identity formation (PIF), or how medical students think, feel and act as physicians. New data suggests that structured mentoring programs like the Palliative Medicine Initiative (PMI) may offer a means of developing PIF in a consistent manner. To better understand how a well-established structured research mentoring program shapes PIF, a study of the experiences of PMI mentees is proposed.MethodologyAcknowledging PIF as a sociocultural construct, a Constructivist approach and Relativist lens were adopted for this study. In the absence of an effective tool, the Ring Theory of Personhood (RToP) and Krishna-Pisupati Model (KPM) model were used to direct this dual Systematic Evidence-Based Approach (Dual-SEBA) study in designing, employing and analysing semi-structured interviews with PMI mentees and mentoring diaries. These served to capture changes in PIF over the course of the PMI's mentoring stages. Transcripts of the interviews and mentoring diaries were concurrently analysed using content and thematic analysis. Complementary themes and categories identified from the Split Approach were combined using the Jigsaw Approach and subsequently compared with mentoring diaries in the Funnelling Process. The domains created framed the discussion.ResultsA total of 12 mentee interviews and 17 mentoring diaries were analysed, revealing two domains-PMI as a Community of Practice (CoP) and Identity Formation. The domains confirmed the centrality of a structured CoP capable of facilitating longitudinal mentoring support and supporting the Socialisation Process along the mentoring trajectory whilst cultivating personalised and enduring mentoring relationships.ConclusionThe provision of a consistent mentoring approach and personalised, longitudinal mentoring support guided along the mentoring trajectory by structured mentoring assessments lay the foundations for more effective mentoring programs. The onus must now be on developing assessment tools, such as a KPM-based tool, to guide support and oversight of mentoring relationships

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P\textit{P}  < 5 × 108^{-8}). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (R\textit{R}g_{g} = -0.22, P\textit{P}  = 5.5 × 1013^{-13}), T2D (R\textit{R}g_{g} = -0.27, P\textit{P}  = 1.1 × 106^{-6}) and coronary artery disease (R\textit{R}g_{g} = -0.30, P\textit{P}  = 6.5 × 109^{-9}). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P\textit{P} = 1.9 × 104^{-4}). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore