38 research outputs found

    Venous thromboembolic events in glioblastoma patients: An epidemiological study

    Full text link
    BACKGROUND AND PURPOSE Venous thromboembolic events (VTEs) are a major complication in cancer patients, and therefore, also in brain cancer patients, anticoagulants are considered appropriate in the treatment of VTEs. METHODS Frequency, risk factors, and treatment of VTEs, as well as associated complications, were assessed in a population-based cohort of glioblastoma patients in the Canton of Zurich, Switzerland. Correlations between clinical data and survival were retrospectively analyzed using the log-rank test and Cox regression models. RESULTS Four hundred fourteen glioblastoma patients with isocitrate dehydrogenase wild-type status were identified. VTEs were documented in 65 patients (15.7%). Median time from tumor diagnosis to the occurrence of a VTE was 1.8 months, and 27 patients were diagnosed with VTEs postoperatively (within 35 days; 42.2%). History of a prior VTE was more common in patients who developed VTEs than in those who did not (p = 0.004). Bevacizumab treatment at any time during the disease course was not associated with occurrence of VTEs (p = 0.593). Most patients with VTEs (n = 61, 93.8%) were treated with therapeutic anticoagulation. Complications occurred in 14 patients (23.0%), mainly intracranial hemorrhages (n = 7, 11.5%). Overall survival did not differ between patients diagnosed with VTEs and those who had no VTE (p = 0.139). Tumor progression was the major cause of death (n = 283, 90.7%), and only three patients (1.0%) died in association with acute VTEs. CONCLUSIONS Venous thromboembolic events occurred early in the disease course, suggesting that the implementation of primary venous thromboembolism prophylaxis during first-line chemoradiotherapy could be explored in a randomized setting

    Functional NIRS to detect covert consciousness in neurocritical patients

    Full text link
    Objective This pilot study assesses the feasibility to detect covert consciousness in clinically unresponsive patients by means of functional near infrared spectroscopy (fNIRS) in a real intensive care unit setting. We aimed to verify if the hemodynamic response to familiar music measured with fNIRS varies according to the level consciousness of the patients. Methods 22 neurocritical patients and 6 healthy controls were included. The experiment consisted in 3 subsequent blocks including a first resting state recording, a period of music playback and a second resting state recording. fNIRS measurement were performed on each subject with two optodes on the forehead. Main oscillatory frequencies of oxyhemoglobin signal were analyzed. Spectral changes of low frequency oscillations (LFO) between subsequent experimental blocks were used as a marker of cortical response. Cortical response was compared to the level of consciousness of the patients and their functional outcome, through validated clinical scores. Results Cortical hemodynamic response to music on the left prefrontal brain was associated with the level of consciousness of the patients and with their clinical outcome after three months. Conclusions Variations in LFO spectral power measured with fNIRS may be a new marker of cortical responsiveness to detect covert consciousness in neurocritical patients. Left prefrontal cortex may play an important role in the perception of familiar music. Significance We showed the feasibility of a simple fNIRS approach to detect cortical response in the real setting of an intensive care unit

    Basic CSF parameters and MRZ reaction help in differentiating MOG antibody-associated autoimmune disease versus multiple sclerosis

    Get PDF
    BackgroundMyelin oligodendrocyte glycoprotein antibody-associated autoimmune disease (MOGAD) is a rare monophasic or relapsing inflammatory demyelinating disease of the central nervous system (CNS) and can mimic multiple sclerosis (MS). The variable availability of live cell-based MOG-antibody assays and difficulties in interpreting low-positive antibody titers can complicate diagnosis. Literature on cerebrospinal fluid (CSF) profiles in MOGAD versus MS, one of the most common differential diagnoses, is scarce. We here analyzed the value of basic CSF parameters to i) distinguish different clinical MOGAD manifestations and ii) differentiate MOGAD from MS.MethodsThis is retrospective, single-center analysis of clinical and laboratory data of 30 adult MOGAD patients and 189 adult patients with relapsing-remitting multiple sclerosis. Basic CSF parameters included CSF white cell count (WCC) and differentiation, CSF/serum albumin ratio (QAlb), intrathecal production of immunoglobulins, CSF-restricted oligoclonal bands (OCB) and MRZ reaction, defined as intrathecal production of IgG reactive against at least 2 of the 3 viruses measles (M), rubella (R) and varicella zoster virus (Z).ResultsMOGAD patients with myelitis were more likely to have a pleocytosis, a QAlb elevation and a higher WCC than those with optic neuritis, and, after review and combined analysis of our and published cases, they also showed a higher frequency of intrathecal IgM synthesis. Compared to MS, MOGAD patients had significantly more frequently neutrophils in CSF and WCC>30/µl, QAlb>10×10-3, as well as higher mean QAlb values, but significantly less frequently CSF plasma cells and CSF-restricted OCB. A positive MRZ reaction was present in 35.4% of MS patients but absent in all MOGAD patients. Despite these associations, the only CSF parameters with relevant positive likelihood ratios (PLR) indicating MOGAD were QAlb>10×10-3 (PLR 12.60) and absence of CSF-restricted OCB (PLR 14.32), whereas the only relevant negative likelihood ratio (NLR) was absence of positive MRZ reaction (NLR 0.00).ConclusionBasic CSF parameters vary considerably in different clinical phenotypes of MOGAD, but QAlb>10×10-3 and absence of CSF-restricted OCB are highly useful to differentiate MOGAD from MS. A positive MRZ reaction is confirmed as the strongest CSF rule-out parameter in MOGAD and could be useful to complement the recently proposed diagnostic criteria

    City of Buffalo Comprehensive Plan 2018-2038

    Get PDF
    The City of Buffalo Comprehensive Plan 2038 focuses on factors of growth and development including: public participation, development considerations, transportation, economic development, housing, and community facilities. The plan includes a Future Land Use Map, which increases development opportunities and indicates preferred or suitable land use for the city.The City of Buffalo Comprehensive Plan 2038 provides a guide for the future growth of the city. This document was developed by Texas Target Communities in partnership with the City of Buffalo. The document was developed through collaboration with Texas Target Communities (TTC) and a City Advisory Committee representing the City of Buffalo. The purpose of the collaboration was to assess current community conditions, develop goals, objectives, and implementation strategies related to future development & growth strategies, through a public participatory process, in order to help guide the future growth of the City

    Statistical methodology for the evaluation of vaccine efficacy in a phase III multi-centre trial of the RTS,S/AS01 malaria vaccine in African children

    Get PDF
    BACKGROUND\ud \ud There has been much debate about the appropriate statistical methodology for the evaluation of malaria field studies and the challenges in interpreting data arising from these trials.\ud \ud METHODS\ud \ud The present paper describes, for a pivotal phase III efficacy of the RTS, S/AS01 malaria vaccine, the methods of the statistical analysis and the rationale for their selection. The methods used to estimate efficacy of the primary course of vaccination, and of a booster dose, in preventing clinical episodes of uncomplicated and severe malaria, and to determine the duration of protection, are described. The interpretation of various measures of efficacy in terms of the potential public health impact of the vaccine is discussed.\ud \ud CONCLUSIONS\ud \ud The methodology selected to analyse the clinical trial must be scientifically sound, acceptable to regulatory authorities and meaningful to those responsible for malaria control and public health policy

    City of Buffalo Comprehensive Plan 2018-2038

    Get PDF
    The City of Buffalo Comprehensive Plan 2038 focuses on factors of growth and development including: public participation, development considerations, transportation, economic development, housing, and community facilities. The plan includes a Future Land Use Map, which increases development opportunities and indicates preferred or suitable land use for the city.The City of Buffalo Comprehensive Plan 2038 provides a guide for the future growth of the city. This document was developed by Texas Target Communities in partnership with the City of Buffalo. The document was developed through collaboration with Texas Target Communities (TTC) and a City Advisory Committee representing the City of Buffalo. The purpose of the collaboration was to assess current community conditions, develop goals, objectives, and implementation strategies related to future development & growth strategies, through a public participatory process, in order to help guide the future growth of the City

    City of Hitchcock Comprehensive Plan 2020-2040

    Get PDF
    Hitchcock is a small town located in Galveston County (Figure 1.1), nestled up on the Texas Gulf Coast. It lies about 40 miles south-east of Houston. The boundaries of the city encloses an area of land of 60.46 sq. miles, an area of water of 31.64 sq. miles at an elevation just 16 feet above sea level. Hitchcock has more undeveloped land (~90% of total area) than the county combined. Its strategic location gives it a driving force of opportunities in the Houston-Galveston Region.The guiding principles for this planning process were Hitchcock’s vision statement and its corresponding goals, which were crafted by the task force. The goals focus on factors of growth and development including public participation, development considerations, transportation, community facilities, economic development, parks, and housing and social vulnerabilityTexas Target Communitie

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    corecore