344 research outputs found

    Remote balance weighs accurately amid high radiation

    Get PDF
    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot

    Constraining angular momentum transport processes in stellar interiors with red-giant stars in the open cluster NGC6819

    Full text link
    Clusters are excellent test benches for verification and improvement of stellar evolution theory. The recent detection of solar-like oscillations in G-K giants in the open cluster NGC6819 with Kepler provides us with independent constraints on the masses and radii of stars on the red giant branch, as well as on the distance to clusters and their ages. We present, for NGC6819, evolutionary models by considering rotation-induced mixing ; and the theoretical low-l frequencies of our stellar models.Comment: Submitted to EPJ Web of Conferences, to appear in the Proceedings of the 3rd CoRoT Symposium, Kepler KASC7 joint meeting; 2 pages, 1 figur

    Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    Full text link
    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&

    FastAlert-an automatic search system to alert about new entries in biological sequence databanks

    Get PDF
    This paper describes a new tool enabling awareness of new sequence databank entries of interest. The Fast Alert system relieves the researcher from the burden of repeating FASTA searches in order to keep up with the rapidly growing amount of information found in biological sequence databanks. The query sequence can be submitted from any computer connected to the Internet. Upon registration, the databank, including the updates, is scanned at periodic intervals with the sequence provided. The results, so-called FastAlert reports, are delivered via electronic mail. The reports contain the FASTA best-scores list and the similarity statistics for each entry liste

    Stellar mass and age determinations - I. Grids of stellar models from Z=0.006 to 0.04 and M=0.5 to 3.5 Msun

    Full text link
    We present dense grids of stellar models suitable for comparison with observable quantities measured with great precision, such as those derived from binary systems or planet-hosting stars. We computed new Geneva models without rotation at metallicities Z=0.006, 0.01, 0.014, 0.02, 0.03 and 0.04 (i.e. [Fe/H] from -0.33 to +0.54) and with mass in small steps from 0.5 to 3.5 Msun. Great care was taken in the procedure for interpolating between tracks in order to compute isochrones. Several properties of our grids are presented as a function of stellar mass and metallicity. Those include surface properties in the Hertzsprung-Russell diagram, internal properties including mean stellar density, sizes of the convective cores, and global asteroseismic properties. We checked our interpolation procedure and compared interpolated tracks with computed tracks. The deviations are less than 1% in radius and effective temperatures for most of the cases considered. We also checked that the present isochrones provide nice fits to four couples of observed detached binaries and to the observed sequences of the open clusters NGC 3532 and M67. Including atomic diffusion in our models with M<1.1 Msun leads to variations in the surface abundances that should be taken into account when comparing with observational data of stars with measured metallicities. For that purpose, iso-Zsurf lines are computed. These can be requested for download from a dedicated web page together with tracks at masses and metallicities within the limits covered by the grids. The validity of the relations linking Z and FeH is also re-assessed in light of the surface abundance variations in low-mass stars.Comment: Accepted for publication in A&

    Analysis of 70 Ophiuchi AB including seismic constraints

    Full text link
    The analysis of solar-like oscillations for stars belonging to a binary system provides a unique opportunity to probe the internal stellar structure and to test our knowledge of stellar physics. Such oscillations have been recently observed and characterized for the A component of the 70 Ophiuchi system. A model of 70 Ophiuchi AB that correctly reproduces all observational constraints available for both stars is determined. An age of 6.2 +- 1.0 Gyr is found with an initial helium mass fraction Y_i=0.266 +- 0.015 and an initial metallicity (Z/X)_i=0.0300 +- 0.0025 when atomic diffusion is included and a solar value of the mixing-length parameter assumed. A precise and independent determination of the value of the mixing-length parameter needed to model 70 Oph A requires accurate measurement of the mean small separation, which is not available yet. Current asteroseismic observations, however, suggest that the value of the mixing-length parameter of 70 Oph A is lower or equal to the solar calibrated value. The effects of atomic diffusion and of the choice of the adopted solar mixture were also studied. We also tested and compared the theoretical tools used for the modeling of stars for which p-modes frequencies are detected by performing this analysis with three different stellar evolution codes and two different calibration methods. We found that the different evolution codes and calibration methods we used led to perfectly coherent results.Comment: 9 pages, 8 figures, accepted for publication in A&

    Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields

    Get PDF
    A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaigns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars.Comment: Accepted for publication in A&A, 25 pages, 13 colour figures (revised version after language editing

    Survey for Transiting Extrasolar Planets in Stellar Systems: III. A Limit on the Fraction of Stars with Planets in the Open Cluster NGC 1245

    Full text link
    We analyze a 19-night photometric search for transiting extrasolar planets in the open cluster NGC 1245. An automated transit search algorithm with quantitative selection criteria finds six transit candidates; none are bona fide planetary transits. We characterize the survey detection probability via Monte Carlo injection and recovery of realistic limb-darkened transits. We use this to derive upper limits on the fraction of cluster members with close-in Jupiter-radii, RJ, companions. We carefully analyze the random and systematic errors of the calculation. For similar photometric noise and weather properties as this survey, observing NGC 1245 twice as long results in a tighter constraint on "Hot Jupiter", HJ, companions than observing an additional cluster of similar richness as NGC 1245 for the same length of time as this survey. This survey observed ~870 cluster members. If 1% of stars have 1.5 RJ HJ companions, we expect to detect one planet for every 5000 dwarf stars observed for a month. To reach a ~2% upper limit on the fraction of stars with 1.5 RJ HJ companions, we conclude a total sample size of ~7400 dwarf stars observed for at least a month will be needed. Results for 1.0 RJ companions, without substantial improvement in the photometric precision, will require a small factor larger sample size.Comment: 24 pages, 15 figures, submitted A

    Higher metal abundances do not solve the solar problem

    Full text link
    Context. The Sun acts as a cornerstone of stellar physics. Thanks to spectroscopic, helioseismic and neutrino flux observations, we can use the Sun as a laboratory of fundamental physics in extreme conditions. The conclusions we draw are then used to inform and calibrate evolutionary models of all other stars in the Universe. However, solar models are in tension with helioseismic constraints. The debate on the ``solar problem'' has hitherto led to numerous publications discussing potential issues with solar models and abundances. Aims. Using the recently suggested high-metallicity abundances for the Sun, we investigate whether standard solar models, as well as models with macroscopic transport reproducing the solar surface lithium abundances and analyze their properties in terms of helioseismic and neutrino flux observations. Methods. We compute solar evolutionary models and combine spectroscopic and helioseismic constraints as well as neutrino fluxes to investigate the impact of macroscopic transport on these measurements. Results. When high-metallicity solar models are calibrated to reproduce the measured solar lithium depletion, tensions arise with respect to helioseismology and neutrino fluxes. This is yet another demonstration that the solar problem is also linked to the physical prescriptions of solar evolutionary models and not to chemical composition alone. Conclusions. A revision of the physical ingredients of solar models is needed in order to improve our understanding of stellar structure and evolution. The solar problem is not limited to the photospheric abundances if the depletion of light elements is considered. In addition, tighter constraints on the solar beryllium abundance will play a key role in the improvement of solar models.Comment: Accepted for publication in Astronomy and Astrophysic

    Extrasolar planets and brown dwarfs around A--F type stars. VIII. A giant planet orbiting the young star HD113337

    Full text link
    In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the detection of a giant planet around the young F-type star HD113337. We estimated the age of the system to be 150 +100/-50 Myr. Interestingly, an IR excess attributed to a cold debris disk was previously detected on this star. The SOPHIE spectrograph on the 1.93m telescope at Observatoire de Haute-Provence was used to obtain ~300 spectra over 6 years. We used our SAFIR tool, dedicated to the spectra analysis of A and F stars, to derive the radial velocity variations. The data reveal a 324.0 +1.7/-3.3 days period that we attribute to a giant planet with a minimum mass of 2.83 +- 0.24 Mjup in an eccentric orbit with e=0.46 +- 0.04. A long-term quadratic drift, that we assign to be probably of stellar origin, is superimposed to the Keplerian solution.Comment: 7 pages, 4 figure
    • …
    corecore