380 research outputs found
The Hydrogen Epoch of Reionization Array Dish I: Beam Pattern Measurements and Science Implications
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer
aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen
from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison
Widefield Array (MWA) and the Precision Array for Probing the Epoch of
Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes
with suspended dipole feeds. Not only does the dish determine overall
sensitivity, it affects the observed frequency structure of foregrounds in the
interferometer. This is the first of a series of four papers characterizing the
frequency and angular response of the dish with simulations and measurements.
We focus in this paper on the angular response (i.e., power pattern), which
sets the relative weighting between sky regions of high and low delay, and
thus, apparent source frequency structure. We measure the angular response at
137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a
collecting area of 93 m^2 in the optimal dish/feed configuration, implying
HERA-320 should detect the EOR power spectrum at z~9 with a signal-to-noise
ratio of 12.7 using a foreground avoidance approach with a single season of
observations, and 74.3 using a foreground subtraction approach. Lastly we study
the impact of these beam measurements on the distribution of foregrounds in
Fourier space.Comment: 13 pages, 9 figures. Replaced to match accepted ApJ versio
A comprehensive comparison of the Sun to other stars: searching for self-selection effects
If the origin of life and the evolution of observers on a planet is favoured
by atypical properties of a planet's host star, we would expect our Sun to be
atypical with respect to such properties. The Sun has been described by
previous studies as both typical and atypical. In an effort to reduce this
ambiguity and quantify how typical the Sun is, we identify eleven
maximally-independent properties that have plausible correlations with
habitability, and that have been observed by, or can be derived from,
sufficiently large, currently available and representative stellar surveys. By
comparing solar values for the eleven properties, to the resultant stellar
distributions, we make the most comprehensive comparison of the Sun to other
stars. The two most atypical properties of the Sun are its mass and orbit. The
Sun is more massive than 95 -/+ 2% of nearby stars and its orbit around the
Galaxy is less eccentric than 93 +/- 1% of FGK stars within 40 parsecs. Despite
these apparently atypical properties, a chi^2 -analysis of the Sun's values for
eleven properties, taken together, yields a solar chi^2 = 8.39 +/- 0.96. If a
star is chosen at random, the probability that it will have a lower value (be
more typical) than the Sun, with respect to the eleven properties analysed
here, is only 29 +/- 11%. These values quantify, and are consistent with, the
idea that the Sun is a typical star. If we have sampled all reasonable
properties associated with habitability, our result suggests that there are no
special requirements for a star to host a planet with life.Comment: Published in the Astrophysical Journal, 684:691-706, 2008 September
1. This version corrects two small errors the press could not correct before
publication - the errors are addressed in an erratum ApJ will release on Dec
1, 200
UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology
X-ray emission during the muonic cascade in hydrogen
We report our investigations of X rays emitted during the muonic cascade in
hydrogen employing charge coupled devices as X-ray detectors. The density
dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha,
K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of
liquid hydrogen density. In this density region collisional processes dominate
the cascade down to low energy levels. A comparison with recent calculations is
given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter
A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility
There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body
A ‘Strategy-as-Practice’ exploration of lean construction strategizing
This article was published in the journal, Building Research and Information [© Taylor & Francis (Routledge)] and the definitive version is available at: http://dx.doi.org/10.1080/09613218.2012.655925A growing body of work emerging from the management and organizational studies literature is the ‘Strategy-as-Practice’ (SaP) perspective, which focuses on the ways in which strategy is actually enacted within organizational settings. This perspective is used to examine the diffusion of lean construction. In recent years lean construction has grown in prominence to become one of the primary performative improvement recipes for the construction sector. However, rather than providing a stable strategy around which more collaborative, intelligent and efficient project-based organizations develop, this research reveals how the lean concept transforms during its journey with unintended organizational consequences. An ethnographic case study, informed by SaP, demonstrates how a lean strategy and its effects on organizational practice and culture cannot be understood separately from material and embodied practices and power effects. As well as contributing to the examination of lean construction practice, the findings show how strategy is enacted within construction organizations and the ensuing effects of social power. A new trajectory is opened for research into strategizing within construction organizations, which provides ways to explore actual practices and spaces where strategizing occurs
Functional Polymorphisms in PRODH Are Associated with Risk and Protection for Schizophrenia and Fronto-Striatal Structure and Function
PRODH, encoding proline oxidase (POX), has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome). Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Science Forum: Consensus-based guidance for conducting and reporting multi-analyst studies
Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
Consensus-based guidance for conducting and reporting multi-analyst studies
International audienceAny large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
- …