137 research outputs found

    Online Applied Problem-Based Learning to Determine the Shelf Life of an on-Site Solution of Refrigerated Drug

    Get PDF
    A problem-based online learning (PBe-L) teaching sequence was designed for calculating the shelf life (expiration date) of an on-site solution of refrigerated drug as part of activities of a Pharmaceutical Physical Chemistry course of Pharmacy major at FES Cuautitlán UNAM in Mexico. The teacher presents students the problem, a group collaborative activity is carried out to search for information in PBL cycles. Students are then shown a virtual experiment that includes experimental results. Another group collaborative activity is carried out for the search of information, for the procedural analysis of the results. Applying knowledge and understanding of the topics of chemical kinetics, temperature effect on the rate of chemical reactions and drug degradation reactions, etc., students solve the problem. Hake's factor was determined for the conceptual gain. A Likert-type satisfaction survey was conducted and compared to the results of a group that was applied to the PBL strategy in person. At the end of the sequence students achieved recognition, comprehension and application learnings and conceptual gain was high. Allowing an integration of its cognitive framework of kinetics topics

    Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus

    Get PDF
    The aim of this study was to identity in silico the relationships among microRNAs (miRNAs) and genes encoding transcription factors, ubiquitylation, DNA methylation, and histone modifications in systemic lupus erythematosus (SLE). To identify miRNA dysregulation in SLE, we used miR2Disease and PhenomiR for information about miRNAs exhibiting differential regulation in disease and other biological processes, and HMDD for information about experimentally supported human miRNA-disease association data from genetics, epigenetics, circulating miRNAs, and miRNA-target interactions. This information was incorporated into the miRNA analysis. High-throughput sequencing revealed circulating miRNAs associated with kidney damage in patients with SLE. As the main finding of our in silico analysis of miRNAs differentially expressed in SLE and their interactions with disease-susceptibility genes, post-translational modifications, and transcription factors; we highlight 226 miRNAs associated with genes and processes. Moreover, we highlight that alterations of miRNAs such as hsa-miR-30a-5p, hsa-miR-16-5p, hsa-miR-142-5p, and hsa-miR-324-3p are most commonly associated with post-translational modifications. In addition, altered miRNAs that are most frequently associated with susceptibility-related genes are hsa-miR-16-5p, hsa-miR-374a-5p, hsa-miR-34a-5p, hsa-miR-31-5p, and hsa-miR-1-3p

    Effects of Zn Substitution in the Magnetic and Morphological Properties of Fe-Oxide-Based Core-Shell Nanoparticles Produced in a Single Chemical Synthesis

    Get PDF
    Magnetic, compositional, and morphological properties of Zn-Fe-oxide core-shell bimagnetic nanoparticles were studied for three samples with 0.00, 0.06, and 0.10 Zn/Fe ratios, as obtained from particle-induced X-ray emission analysis. The bimagnetic nanoparticles were produced in a one-step synthesis by the thermal decomposition of the respective acetylacetonates. The nanoparticles present an average particle size between 25 and 30 nm as inferred from transmission electron microscopy (TEM). High-resolution TEM images clearly show core-shell morphology for the particles in all samples. The core is composed by an antiferromagnetic (AFM) phase with a Wüstite (Fe 1-y O) structure, whereas the shell is composed by a Zn x Fe 3-x O 4 ferrimagnetic (FiM) spinel phase. Despite the low solubility of Zn in the Wüstite, electron energy-loss spectroscopy analysis indicates that Zn is distributed almost homogeneously in the whole nanoparticle. This result gives information on the formation mechanisms of the particle, indicating that the Wüstite is formed first, and the superficial oxidation results in the FiM ferrite phase with similar Zn concentration than the core. Magnetization and in-field Mössbauer spectroscopy of the Zn-richest nanoparticles indicate that the AFM phase is strongly coupled to the FiM structure of the ferrite shell, resulting in a bias field (H EB ) appearing below TN FeO , with H EB values that depend on the core-shell relative proportion. Magnetic characterization also indicates a strong magnetic frustration for the samples with higher Zn concentration, even at low temperatures.Fil: Lohr, Javier Hernán. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; ArgentinaFil: de Almeida, Adriele Aparecida. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; ArgentinaFil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; ArgentinaFil: Goya, Gerardo Fabian. Universidad de Zaragoza; EspañaFil: Torres Molina, Teobaldo Enrique. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Universidad de Zaragoza; EspañaFil: Fernandez Pacheco, Rodrigo. Universidad de Zaragoza; EspañaFil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Vasquez Mansilla, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Cohen, Renato. Universidade de Sao Paulo; BrasilFil: Nagamine, Luiz C. C. M.. Universidade de Sao Paulo; BrasilFil: Rodriguez, Luis Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentin

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Efficacy and Safety of Ixekizumab in the Treatment of Radiographic Axial Spondyloarthritis:Sixteen-Week Results From a Phase III Randomized, Double-Blind, Placebo-Controlled Trial in Patients With Prior Inadequate Response to or Intolerance of Tumor Necrosis Factor Inhibitors

    Get PDF
    Objective: To investigate the efficacy and safety of ixekizumab in patients with active radiographic axial spondyloarthritis (SpA) and prior inadequate response to or intolerance of 1 or 2 tumor necrosis factor inhibitors (TNFi). Methods: In this phase III randomized, double-blind, placebo-controlled trial, adult patients with an inadequate response to or intolerance of 1 or 2 TNFi and an established diagnosis of axial SpA (according to the Assessment of SpondyloArthritis international Society [ASAS] criteria for radiographic axial SpA, with radiographic sacroiliitis defined according to the modified New York criteria and ≥1 feature of SpA) were recruited and randomized 1:1:1 to receive placebo or 80-mg subcutaneous ixekizumab every 2 weeks (IXEQ2W) or 4 weeks (IXEQ4W), with an 80-mg or 160-mg starting dose. The primary end point was 40% improvement in disease activity according to the ASAS criteria (ASAS40) at week 16. Secondary outcomes and safety were also assessed. Results: A total of 316 patients were randomized to receive placebo (n = 104), IXEQ2W (n = 98), or IXEQ4W (n = 114). At week 16, significantly higher proportions of IXEQ2W patients (n = 30 [30.6%]; P = 0.003) or IXEQ4W patients (n = 29 [25.4%]; P = 0.017) had achieved an ASAS40 response versus the placebo group (n = 13 [12.5%]), with statistically significant differences reported as early as week 1 with ixekizumab treatment. Statistically significant improvements in disease activity, function, quality of life, and spinal magnetic resonance imaging–evident inflammation were observed after 16 weeks of ixekizumab treatment versus placebo. Treatment-emergent adverse events (AEs) with ixekizumab treatment were more frequent than with placebo. Serious AEs were similar across treatment arms. One death was reported (IXEQ2W group). Conclusion: Ixekizumab treatment for 16 weeks in patients with active radiographic axial SpA and previous inadequate response to or intolerance of 1 or 2 TNFi yields rapid and significant improvements in the signs and symptoms of radiographic axial SpA versus placebo

    Health outcomes among HIV-positive Latinos initiating antiretroviral therapy in North America versus Central and South America

    Get PDF
    Introduction: Latinos living with HIV in the Americas share a common ethnic and cultural heritage. In North America, Latinos have a relatively high rate of new HIV infections but lower rates of engagement at all stages of the care continuum, whereas in Latin America antiretroviral therapy (ART) services continue to expand to meet treatment needs. In this analysis, we compare HIV treatment outcomes between Latinos receiving ART in North America versus Latin America. Methods: HIV-positive adults initiating ART at Caribbean, Central and South America Network for HIV (CCASAnet) sites were compared to Latino patients (based on country of origin or ethnic identity) starting treatment at North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) sites in the United States and Canada between 2000 and 2011. Cox proportional hazards models compared mortality, treatment interruption, antiretroviral regimen change, virologic failure and loss to follow-up between cohorts. Results: The study included 8400 CCASAnet and 2786 NA-ACCORD patients initiating ART. CCASAnet patients were younger (median 35 vs. 37 years), more likely to be female (27% vs. 20%) and had lower nadir CD4 count (median 148 vs. 195 cells/µL, p<0.001 for all). In multivariable analyses, CCASAnet patients had a higher risk of mortality after ART initiation (adjusted hazard ratio (AHR) 1.61; 95% confidence interval (CI): 1.32 to 1.96), particularly during the first year, but a lower hazard of treatment interruption (AHR: 0.46; 95% CI: 0.42 to 0.50), change to second-line ART (AHR: 0.56; 95% CI: 0.51 to 0.62) and virologic failure (AHR: 0.52; 95% CI: 0.48 to 0.57). Conclusions: HIV-positive Latinos initiating ART in Latin America have greater continuity of treatment but are at higher risk of death than Latinos in North America. Factors underlying these differences, such as HIV testing, linkage and access to care, warrant further investigation

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    corecore