42 research outputs found

    The Anti-Inflammatory Drug Leflunomide Is an Agonist of the Aryl Hydrocarbon Receptor

    Get PDF
    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity and biological activity of dioxins and related chemicals. The AhR influences a variety of processes involved in cellular growth and differentiation, and recent studies have suggested that the AhR is a potential target for immune-mediated diseases.During a screen for molecules that activate the AhR, leflunomide, an immunomodulatory drug presently used in the clinic for the treatment of rheumatoid arthritis, was identified as an AhR agonist. We aimed to determine whether any biological activity of leflunomide could be attributed to a previously unappreciated interaction with the AhR. The currently established mechanism of action of leflunomide involves its metabolism to A771726, possibly by cytochrome P450 enzymes, followed by inhibition of de novo pyrimidine biosynthesis by A771726. Our results demonstrate that leflunomide, but not its metabolite A771726, caused nuclear translocation of AhR into the nucleus and increased expression of AhR-responsive reporter genes and endogenous AhR target genes in an AhR-dependent manner. In silico Molecular Docking studies employing AhR ligand binding domain revealed favorable binding energy for leflunomide, but not for A771726. Further, leflunomide, but not A771726, inhibited in vivo epimorphic regeneration in a zebrafish model of tissue regeneration in an AhR-dependent manner. However, suppression of lymphocyte proliferation by leflunomide or A771726 was not dependent on AhR.These data reveal that leflunomide, an anti-inflammatory drug, is an agonist of the AhR. Our findings link AhR activation by leflunomide to inhibition of fin regeneration in zebrafish. Identification of alternative AhR agonists is a critical step in evaluating the AhR as a therapeutic target for the treatment of immune disorders

    Association of a 62 Variants Type 2 Diabetes Genetic Risk Score With Markers of Subclinical Atherosclerosis: A Transethnic, Multicenter Study

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2D) and cardiovascular disease share risk factors and subclinical atherosclerosis (SCA) predicts events in those with and without diabetes mellitus. T2D genetic risk may predict both T2D and SCA. We hypothesized that greater T2D genetic risk is associated with higher extent of SCA. METHODS AND RESULTS: In a cross-sectional analysis, including 649210 European Americans, 3773 African Americans, 1446 Hispanic Americans, and 773 Chinese Americans without known cardiovascular disease and enrolled in the Framingham Heart Study, Coronary Artery Risk Development in Young Adults, Multi-Ethnic Study of Atherosclerosis, and Genetic Epidemiology Network of Arteriopathy studies, we tested a 62 T2D-loci genetic risk score for association with measures of SCA, including coronary artery or abdominal aortic calcium score, common and internal carotid artery intima-media thickness, and ankle-brachial index. We used ancestry-stratified linear regression models, with random effects accounting for family relatedness when appropriate, applying a genetic-only (adjusted for sex) and a full SCA risk factors-adjusted model (significance, P<0.01=0.05/5, number of traits analyzed). An inverse association with coronary artery calcium score in Multi-Ethnic Study of Atherosclerosis Europeans (fully-adjusted P=0.004) and with common carotid artery intima-media thickness in the Framingham Heart Study (P=0.009) was not confirmed in other study cohorts, either separately or in meta-analysis. Secondary analyses showed no consistent associations with \u3b2-cell and insulin resistance genetic risk sub-scores in the Framingham Heart Study and in the Coronary Artery Risk Development in Young Adults. CONCLUSIONS: SCA does not have a major genetic component linked to a burden of 62 T2D loci identified by large genome-wide association studies. A shared T2D-SCA genetic basis, if any, might become apparent from better functional information about both T2D and cardiovascular disease risk loci

    Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013

    Get PDF
    Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0-65·6) in 1990, to 71·5 years (UI 71·0-71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8-48·2) to 54·9 million (UI 53·6-56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade. Funding Bill &amp; Melinda Gates Foundation

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Irreducible posterior hip dislocation in the setting of a multifocal displaced pelvic ring injury: A case report

    Get PDF
    Case report: Traumatic hip dislocations require prompt diagnosis and reduction to preserve the native joint. The classic irreducible posterior hip fracture-dislocation has been described as an immobile, slightly flexed, and internally rotated hip on physical exam. Classically, this irreducible pattern is associated with an ipsilateral femoral head fracture. The purpose of our report is to present an irreducible posterior hip dislocation with preserved motion in the setting of an unstable pelvic ring injury without associated femoral head pathology. Despite lacking clinical features of an irreducible hip, closed reduction in the emergency and operating rooms was unsuccessful, even after frame application for pelvis stability. Persistent irreducibility necessitated open reduction, where the femoral head was found to be buttonholed through the posterior hip capsule and blocking reduction. Conclusion: A posteriorly dislocated hip with preserved motion in the setting of a concomitant unstable pelvic ring injury may belie the true locked nature of the femoroacetabular dislocation and high suspicion for femoral head incarceration is required. The description of this unique irreducible fracture pattern and the stepwise approach used for reduction may be useful for other surgeons who may encounter similar patterns of injury

    Head and Neck Cutaneous Soft-Tissue Sarcoma Demonstrate Sex and Racial/Ethnic Disparities in Incidence and Socioeconomic Disparities in Survival.

    No full text
    BackgroundCutaneous soft-tissue sarcoma (CSTS) of the head and neck are rare and are known to have aggressive clinical course. The current study utilizes a population-based registry in the U.S. to characterize these malignancies and explore disparities.MethodsNational Cancer Institute's (NCI) Surveillance, Epidemiology and End Result (SEER) database from 2000 to 2018 was queried to report incidence and survival data in 4253 cases in the U.S.ResultsMales were 5.37 times more likely and Non-Hispanic-White people (NHW) were 4.62 times more likely than females and Non-Hispanic-Black people (NHB) to develop CSTS of the head and neck. The overall incidence was 0.27 per 100,000 persons in 2018, with a significant increase since 2000. Advanced age and stage, histologic group other than 'fibromatous sarcoma' and lower SES groups were independent factors for worse overall survival.ConclusionsCSTS of the head and neck demonstrate sex and racial/ethnic disparities in incidence and socioeconomic disparities in overall survival.Level of evidenceII

    Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas

    No full text
    Purpose Given the unmet need for novel immunotherapy in soft tissue sarcoma (STS), we sought to characterize the phenotype and function of intratumoral natural killer (NK) and T cells to identify novel strategies to augment tumor-infiltrating lymphocyte (TIL) function.Experimental design Using prospectively collected specimens from dogs and humans with sarcomas, archived specimens, and The Cancer Genome Atlas (TCGA) data, we evaluated blood and tumor NK and T cell phenotype and function and correlated those with outcome. We then assessed the effects of interleukin 15 (IL-15) stimulation on both NK and T cell activation and TIGIT upregulation. Finally, we evaluated cytotoxic effects of IL-15 combined with TIGIT blockade using a novel anti-TIGIT antibody.Results TILs were strongly associated with survival outcome in both archived tissue and TCGA, but higher TIL content was also associated with higher TIGIT expression. Compared with blood, intratumoral NK and T cells showed significantly higher expression of both activation and exhaustion markers, in particular TIGIT. Ex vivo stimulation of blood and tumor NK and T cells from patients with STS with IL-15 further increased both activation and exhaustion markers, including TIGIT. Dogs with metastatic osteosarcoma receiving inhaled IL-15 also exhibited upregulation of activation markers and TIGIT. Ex vivo, combined IL-15 and TIGIT blockade using STS blood and tumor specimens significantly increased cytotoxicity against STS targets.Conclusion Intratumoral NK and T cells are prognostic in STS, but their activation is marked by significant upregulation of TIGIT. Our data suggest that combined IL-15 and TIGIT blockade may be a promising clinical strategy in STS
    corecore