17 research outputs found

    The validity and reliability of school-based fundamental movement skills screening to identify children with motor difficulties

    Get PDF
    Aim Assess whether school-based teacher-led screening is effective at identifying children with motor difficulties. Methods Teachers tested 217 children aged between 5 and 11 years old, after a one hour training session, using a freely available tool (FUNMOVES). Four classes (n = 91) were scored by both researchers and teachers to evaluate inter-rater reliability. Researchers assessed 22 children using the Movement Assessment Battery for Children (MABC-2; considered to be the ‘gold standard’ in Europe for use as part of the diagnostic process for Developmental Coordination Disorder) to assess concurrent and predictive validity. Results Inter-rater reliability for all individual activities within FUNMOVES ranged from 0.85–0.97 (unweighted Kappa; with 95%CI ranging from 0.77–1). For total score this was lower (κ = 0.76, 95%CI = 0.68–0.84), however when incorporating linear weighting, this improved (κ = 0.94, 95%CI = 0.89–0.99). When evaluating FUNMOVES total score against the MABC-2 total score, the specificity (1, 95%CI = 0.63–1) and positive predictive value (1; 95%CI = 0.68–1) of FUNMOVES were high, whereas sensitivity (0.57, 95%CI = 0.29–0.82) and negative predictive values (0.57, 95%CI = 0.42–0.71) were moderate. Evaluating only MABC-2 subscales which are directly related to fundamental movement skills (Aiming & Catching, and Balance) improved these values to 0.89 (95%CI = 0.52–1) and 0.93 (95%CI = 0.67–0.99) respectively. Interpretation Teacher-led screening of fundamental movement skills (via FUNMOVES) is an effective method of identifying children with motor difficulties. Such universal screening in schools has the potential to identify movement difficulties and enable earlier intervention than the current norm

    An introduction to deep learning on biological sequence data: Examples and solutions

    Get PDF
    Motivation: Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use libraries for implementation and training of neural networks are the drivers of this development. The use of deep learning has been especially successful in image recognition; and the development of tools, applications and code examples are in most cases centered within this field rather than within biology. Results: Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively easily be designed and trained to state-of-the-art performance on three biological sequence problems: prediction of subcellular localization, protein secondary structure and the binding of peptides to MHC Class II molecules. Availability and implementation: All implementations and datasets are available online to the scientific community at https://github.com/vanessajurtz/lasagne4bio. Supplementary information: Supplementary data are available at Bioinformatics online.Fil: Jurtz, Vanessa Isabell. Technical University of Denmark; DinamarcaFil: Johansen, Alexander Rosenberg. Technical University of Denmark; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Almagro Armenteros, Jose Juan. Technical University of Denmark; DinamarcaFil: Nielsen, Henrik. Technical University of Denmark; DinamarcaFil: Sønderby, Casper Kaae. Universidad de Copenhagen; DinamarcaFil: Winther, Ole. Universidad de Copenhagen; DinamarcaFil: Sønderby, Søren Kaae. Universidad de Copenhagen; Dinamarc
    corecore