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Abstract 
Motivation: Deep neural network architectures such as convolutional and long short-term memory 
networks have become increasingly popular as machine learning tools during the recent years. The 
availability of greater computational resources, more data, new algorithms for training deep models 
and easy to use libraries for implementation and training of neural networks are the drivers of this 
development. The use of deep learning has been especially successful in image recognition; and the 
development of tools, applications and code examples are in most cases centered within this field 
rather than within biology.  
Results: Here, we aim to further the development of deep learning methods within biology by provid-
ing application examples and ready to apply and adapt code templates. Given such examples, we 
illustrate how architectures consisting of convolutional and long short-term memory neural networks 
can relatively easily be designed and trained to state-of-the-art performance on three biological se-
quence problems: prediction of subcellular localization, protein secondary structure and the binding of 
peptides to MHC Class II molecules.   
Availability: All implementations and datasets are available online to the scientific community at 
https://github.com/vanessajurtz/lasagne4bio. 
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 

 
 

1 Introduction  
Machine learning is a specialization of computer science closely related 
to pattern recognition, data science, data mining and artificial intelli-
gence (Machine Learning -Encyclopedia Britannica, 2016). Within the 
field of machine learning, artificial neural networks, inspired by biologi-
cal neural networks, have in recent years regained popularity 
(Schmidhuber, 2015). Their most recent success began with the devel-
opment of effective methods to train deep neural networks (networks 
with multiple hidden layers), and the coining of the term deep learning 
around 2006 (Hinton and Salakhutdinov, 2006; Schmidhuber, 2015). 

Since then improvements have been made in part enabled by the access 
to greater computational resources, especially graphics processing units 
(GPU), enabling training of deep neural networks containing many pa-
rameters in reasonable time.  Given this, specialized neural network 
architectures like convolutional neural networks (CNN) and recurrent 
neural networks (RNN) with long short-term memory cells (LSTM) can 
now be trained efficiently and have been successfully applied to many 
problems including image recognition (Ciresan et al., 2011; Krizhevsky 
et al., 2012) and natural language processing tasks such as speech recog-
nition (Geiger et al., 2014) and language translation (Sutskever et al., 
2014). 
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 Fig. 1. A) Feed forward network. Amino Acids C,A,D,A,D are encoded as “one-hot” 
vectors with a 1 at the position corresponding to the amino acid type (A, C or D), and zero 
otherwise. B) Convolutional neural network. A filter (blue) is slid over the input se-
quence. The filter here has a length of three amino acids. At each position the filter has a 
preference for different amino acid types. The filter output is calculated by taking the sum 
of the element-wise product of the input and the filter position-specific weights. Each 
time the filter is moved, it feeds into a different hidden neuron in the hidden layer, here 
visualized in the f1 row. Multiple filters will give multiple inputs to the next layer {f1, f2, 
f3…}. C) A filter can be visualized as a sequence motif. This helps to understand which 
amino acids the filter prefers at each sequence position. When the filter is slid over the 
input sequence, it functions as motif detector and becomes activated when the input 
matches its preference. For example, this filter has negative output for sub-sequences 
ADC and positive for DCD. 
 

The successes of neural networks have led to the development of various 
programming frameworks to build and train neural networks. Examples 
are PyTorch (http://pytorch.org/), Caffe (http://caffe.berkeleyvision.org) 
and TensorFlow (https://www.tensorflow.org). Our framework of choice 
here is Lasagne (Dieleman et al., 2015), a well-established easy to use 
and extremely flexible lightweight Python library built on top of the 
Theano numerical computation library (Bastien et al., 2012). While most 
other frameworks require the user to learn a dedicated programming 
language, Lasagne is Python-based and therefore relatively easy to use 
for bioinformaticians already programming in Python. Further Lasagne’s 
active community ensures that the latest neural network training algo-
rithms and architectures are available to the user. 
 
Within bioinformatics, examples of deep learning applications include 
prediction of splicing patterns (Leung et al., 2014), DNA and RNA 
targets of regulatory proteins (Alipanahi et al., 2015), protein secondary 
structure (Wang et al., 2016) and biomedical image analysis (Moeskops 
et al., 2016; Cha et al., 2016). However, the number of applications is 
still relatively small, and the application of deep learning methods within 
biology is in our view being held back due to a lack of examples and 
programming templates with a biological background facilitating a head 
start on the use of these libraries for non-experts.  
 
Here, we seek to alter this by providing a non-expert introduction to the 
field of deep neural networks with application examples and ready to 
apply and adapt code templates illustrating how convolutional and 
LSTM neural networks can be successfully designed and trained on 
biological data to achieve state-of-the-art performance in prediction of 1) 
protein subcellular localization, 2) protein secondary structure, and 3) 
peptides binding to Major Histocompatibility Complex Class II mole-
cules. Implementations of the methods are available online to be used by 
non-expert end-users as templates for developing models to describe a 

given problem of interest https://github.com/vanessajurtz/lasagne4bio. 
The code can run both on CPU and cuda-enabled GPU. GPU gives of the 
order of a 100fold speed-up.  

2 Deep learning background 
The traditional neural network architecture is the feed forward neural 
network with one hidden layer, in which each input neuron is connected 
to each neuron in the hidden layer and each neuron in the hidden layer is 
in turn connected to each neuron in the output layer. A non-linear so-
called activation function, most often tanh or sigmoid, is applied to give 
the output of a neuron given its input. For classification problems the 
number of units in the output layer is equal to the number of classes. The 
softmax function is often used to make the outputs probabilistic, that is 
given an input the network assigns a probability to each class. For the 
prediction of a continuous output, a single linear output neuron is typi-
cally used. All connections in the network are directed from input to 
output, and it is possible to build deep networks by adding more hidden 
layers where each neuron will be connected to each neuron in the follow-
ing layer. This type of architecture is visualized in Figure 1A. The hid-
den layer of a feed forward neural network is also referred to as a dense 
layer, because is fully connected to the previous layer. 
 
In convolutional neural networks (CNNs) information also flows only 
from the input to the output, layer by layer. They are however not fully 
connected, but instead slide a filter (a set of weights) over the input that 
feeds into a different neuron in the next layer each time it is moved as 
illustrated in Figure 1B. The filter will thereby identify features in input 
irrespectively of where they appear. This concept is visualized in Figure 
1C using the example of a convolutional filter detecting a motif in an 
amino acid sequence.  Pooling such as mean pooling (averaging of near-
by positions) enables the network to become invariant to small local 
deformations in the input. Convolutional neural networks often consist of 
many convolutional filters and many convolutional and pooling layers to 
enable the network to integrate the information from the different filters 
and various levels of abstraction (LeCun et al., 2015). When applied to 
biological problems, convolutional neural networks are ideally suited to 
locate motifs, for example in a protein sequence, independent of their 
position within the sequence. 
 
Recurrent neural networks (RNNs) are neural network models for se-
quential data. In addition to the feed forward connections they have time-
delayed connections between the neurons of a hidden layer (Graves, 
2012). RNNs process the sequence one element at a time, in biological 
sequence context one residue after the other. The information therefore 
flows both from input to output and along the sequence. In this way 
memory is generated and the neural network gains the ability to store and 
integrate information from past inputs. Long short-term memory 
(LSTM) neural networks are a special type of RNNs in which the scalar-
valued hidden neuron is replaced with the LSTM memory block. The 
LSTM memory block is inspired by a computer memory cell where 
context-dependent input, output and forget gates control what is written 
to, read from and kept in the cell in each time-step. In this way, it is 
easier for the network to store a given input over many time steps. 
  
LSTMs (and in general RNNs) can by construction handle input se-
quences of varying length. This makes RNNs highly flexible for differ-
ent types of tasks where either the input (many-to-one), the output (one-
to-many) or both are sequences (many-to-many).  Many-to-one is a 
model to process an entire sequence one amino acid at a time and then 
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predict whether or not it has a certain biological property after having 
seen the entire sequence (here exemplified in the prediction of peptide 
binding to MHCII). The many-to-many approach, also known as tagging 
or sequence labeling, can for example be used to predict the secondary 
structure classification of each amino acid in a protein. Performance can 
be improved by changing to the many-to-many bidirectional approach 
(biLSTM) where the network processes the input sequence forwards and 
backwards and bases each prediction not just on what came before the 
current position but also on what comes after. The same approach can be 
used in a many-to-one approach here exemplified in protein subcellular 
localization prediction.   
 
For a more detailed explanation of the CNN and LSTM architectures, 
including the mathematical formulas to calculate the output and update 
weights, we refer the reader to textbook “Deep Learning” by Goodfellow 
et al. (2016). 

2.1 Designing your model 
In this section, we highlight some of the key issues to consider when 
constructing deep neural networks such as how to avoid overfitting when 
increasing network size and depth. 

2.1.1 Sequence encoding 

When working with biological sequence data the numeric representation 
of the data influences model performance. An obvious solution is to use 
the so-called sparse or one-hot encoding (see Figure 1A), where an ami-
no acid is represented by a vector of the length 20, containing a single 
one and 19 zeros. The parameters connecting an amino acid input to the 
first hidden layer is often called the embedding for that amino acid. 
Another possibility is to use the BLOSUM matrix (Eddy, 2004) for 
encoding, representing each amino acid by its corresponding row in the 
BLOSUM matrix.  The BLOSUM matrix captures information about 
which pairs of amino acids are easily interchangeable during evolution, 
but it does not capture information about the evolutionary constraints on 
a protein family (i.e. which amino acid positions are highly conserved 
and which are variable). This information can effectively be captured in 
a sequence profile. A sequence profile has the dimensions protein length 
times the number of amino acids and is conventionally generated by 
running PSI-BLAST (Altschul et al., 1997)  against a reference database. 
Encoding protein sequences as such profiles has demonstrated very 
helpful for prediction of for instance secondary structure (Jones, 1999). 
 
2.1.2 Regularization and training 
Regularization techniques aim to prevent overfitting and are especially 
relevant for large models containing many parameters. Before applying 
regularization techniques it is important to partition the dataset carefully 
dealing with data redundancy and set up the neural network training 
using cross-validation (further detailed in the supplementary materials). 
Dropout (Hinton et al., 2012)  reduces overfitting by introducing discrete 
noise during training. For every training input the output of each hidden 
unit is set to zero with a certain preselected probability. Batch normaliza-
tion (Ioffe and Szegedy, 2015) re-parameterizes the hidden unit activa-
tion in order to increase convergence speed but also makes the output 
stochastic, creating a regularizing effect. Appropriate weight initializa-
tion (Glorot and Bengio, 2010) and gradient optimization techniques 
(e.g. Adam (Kingma and Ba, 2014)) also influence the overall perfor-
mance. Combining ensembles of 5-10 models initialized with different 
random seeds usually leads to a substantial increase in performance. 

 
2.1.3 Attention 
In standard many-to-one RNNs, the last hidden state is most often used 
as input to a downstream network. However, when certain subparts of 
the input sequence contain most of the predictive information, this ap-
proach is suboptimal. Here, it will be beneficial to add attention 
weighting (Bahdanau et al., 2014; Jaderberg et al., 2015) (as illustrated 
in Figure 2B).  Attention is implemented by learning a context dependent 
normalized weight for each hidden state of the input sequence. The input 
to the downstream network is then the weighted average over all hidden 
states. This normalized weight is computed in two steps: 1) a one hidden 
layer dense network takes each hidden state of the RNN as input and 2) 
passes these network outputs through a softmax function. In one of the 
examples shown later, we use such attention to visualize and identify 
parts of a protein sequence that are important for subcellular localization 
prediction.  
 
2.1.4 Pooling 
Max-pooling provides a way of reducing the input or hidden layer size 
by selecting only the maximally activated neuron from a number of 
neighboring neurons. Alternatively mean pooling can be performed 
where the mean activation is calculated among neighboring neurons. 
Pooling is often used in convolutional neural networks (LeCun et al., 
2015). To make a convolutional neural network independent of the input 
sequence length, global max-pooling can be applied where only the 
maximally activated neuron of the input or hidden layer is selected for 
each of the convolutional filters. In this way, the number of hidden neu-
rons generated by the convolutional filters is equal to the number of 
filters and not influenced by the input sequence length.  

3 Example biological applications 
To demonstrate the usefulness of the CNN and LSTM neural network 
architectures for machine learning on biological data, we have applied 
the framework to three important biological problems: subcellular locali-
zation, protein secondary structure and peptide binding to MHC Class II 
(MHCII) molecules. The details of the data, models and training and 
testing procedure are described in the supplementary materials. Note, 
however that not all problems are equally suited for analyses using deep 
neural network methods (the limiting factor in most cases being the 
amount of data available), and that definition of optimal network archi-
tectures (guided by biological insights) and training protocols is as im-
portant for a successful application as the choice of deep learning meth-
od. An in-depth coverage of these themes is however beyond the scope 
of this manuscript. However, a generally good starting architecture for 
machine learning on biological sequence data has an input-to-output 
structure as shown in Figure 2B: Encoded seq-to-CNN-to-biLSTM-to-
Attention-to-Dense-to-Output. Dependent upon the problem at hand, one 
may omit architecture elements or introduce skip connections as shown 
in Figure 3B. In the online material, we have included Jupyter Notebook 
implementations of different models starting from a simple dense feed 
forward model up to a full model including CNN, LSTM and attention to 
illustrate the contribution of each architectural element. This is discussed 
in more detail below. 
 
3.1 Subcellular localization 
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In eukaryotes, proteins are either secreted from the cell or sorted into 
numerous different cellular sub-compartments such as e.g. nucleus, 
cytoplasm and Golgi (see Figure 2A). For some locations, the proteins 
are known to contain specific sequence motifs, where the best under-
stood signal is the N-terminal signal peptide in proteins belonging to the 
secretory pathway. However, other subcellular compartments are also 
known to contain weaker signals such as the nuclear localization signal 
in nuclear proteins, membrane crossing alpha-helices in membrane pro-
teins or KDEL-type retention signals for endoplasmic reticulum proteins 
(Lodish et al., 2016).  

Fig. 2.  A) Schematic illustration of subcellular localization classification. B) The neural 
network architecture used to predict the subcellular localization of proteins. C) Visualiza-
tion of the positions within the protein amino acid sequence that have high importance for 
the prediction of subcellular localization. Sequence position importance is determined by 
an attention function and the middle part of the protein sequences have been cut out in 
order to align N- and C-terminus. The different subcellular localization classes are shown 
on the y-axis. D) Table of the A-LSTM performance compared to the state of the art 
sequence driven SVM prediction method MultiLoc. E) Visualization of convolutional 
filter. For this filter charged amino acids will suppress the output (blue, red) while hydro-
phobic amino acids will increase the output (black). C) and D) are adapted from 
(Sønderby et al., 2015). 

 
The task of predicting protein sorting or subcellular localization has 
attracted large interest in the bioinformatics field (Emanuelsson et al., 
2007) and can be generally stated as a sequence to multi-class prediction 
problem. The state of the art data driven approach for prediction of sub-
cellular location of proteins is MultiLoc (Höglund et al., 2006), which is 
based on support vector machines (SVM) taking into account N-terminal 
targeting regions, amino acid composition and protein sequence motifs. 
The SherLoc2 method (Briesemeister et al., 2009) combines the se-
quence-based MultiLoc method with text mining approaches and the 
inclusion of Gene Ontology (GO) terms to improve performance.  
 
We have implemented four models (see online Jupyter Notebooks) start-
ing from a simple feed forward (FNN) dense model up to the full model 
including CNN, LSTM and attention architecture visualized in Figure 2B 
and called A-LSTM in the following. We apply these models to a re-
duced version of the subcellular localization dataset to illustrate the 
effect of hyper parameter choices and network architecture on predictive 
performance and running times. In this example, the model with the 
lowest performance was FFN, with a classification accuracy fraction 
(Acc) of 0.757. The CNN and CNN-LSTM models followed with an 
accuracy of 0.783 and 0.814, respectively. Finally, the model with the 

highest accuracy was the A-LSTM with Acc=0.830. If we evaluate the 
performance for the different prediction classes for the four models, we 
do not see large differences for the classes characterized with many 
proteins (data not shown). However, the A-LSTM demonstrates im-
proved performance for classes characterized with very few examples, 
such as ER, Golgi apparatus, lysosome and vacuole. The main drawback 
of the models using LSTM layers compare to the FFN and CNN is the 
training time. On average, LSTM models take 10 to 12 seconds per 
epoch, whereas FFN takes 0.3 seconds and CNN takes 2.5 seconds. This 
could be a limiting factor with more data or a more complex architecture. 
In the remainder of the section, we discuss the findings for A-LSTM 
trained on the entire MultiLoc dataset.  
 
In the subcellular localization problem, the position of the sorting signal 
is often of interest to the biologists. LSTM neural networks combined 
with an attention function are ideally suited to solve this task. The model 
presented here is a modified and improved version of the one presented 
by Sønderby et al. (2015). The architecture of our A-LSTM neural net-
work is visualized in Figure 2B and is based on a convolutional layer 
followed by a bi-directional LSTM. Additionally, we applied an atten-
tion function after the LSTM allowing us to assign an importance to each 
position in a protein sequence with regards to subcellular location.  Here, 
we calculate the activations of the LSTM memory blocks (hidden state) 
for each position in the protein sequence, and apply the attention func-
tion to determine the importance of each hidden state (giving an indica-
tion of the importance of the underlying position in the input sequence). 
Next, we calculate the attention weighted sum of all hidden states that 
are used as input to a dense feed forward neural network with one hidden 
layer and softmax output to obtain the final prediction of subcellular 
localization. All models were trained on the same dataset as the Mul-
tiLoc method described above.  
 
The reasoning behind this choice of architecture is based upon the fol-
lowing idealized flow of information from discriminative subsequences 
to classification: The CNN filters deal with the issue of sequence align-
ment, and provide a learned filter-bank sensitive to specific sequence 
motives. When such a motif is present somewhere in the sequence, it will 
lead to an increased absolute input to the LSTM at that position. The 
biLSTM layers will integrate this information locally both forward and 
backward in the sequence and the attention function uses its learned 
context awareness to pass the discriminatory information from these 
RNN hidden states on to the dense layer and then to the softmax classifi-
cation.  
 
A-LSTM achieved an accuracy of Acc=0.914, outperforming the Mul-
tiLoc method which had an Acc=0.767. SherLoc2 outperformed our 
models with an Acc=0.93. However, SherLoc2 is not purely sequence 
data driven but also includes text-mining approaches, and we hypothe-
size extending our A-LSTM ensemble in that way would improve per-
formance further. 
 
In Figure 2C, we illustrate where in the sequence the A-LSTM model 
assigns weight for proteins belonging to different subcellular compart-
ments. Sequences from the compartments ER, extracellular, lysosomal, 
and vacuolar have clearly marked N-terminal signal peptides. Chloro-
plast and mitochondrial proteins also have N-terminal sorting signals. 
For the plasma membrane category, we observe that some proteins have 
signal peptides, while the model generally focuses on sections, presuma-
bly transmembrane helices, scattered across the rest of the protein se-
quence with some overabundance close to the C-terminus. Cytoplasmic 
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and nuclear proteins do not have N-terminal sorting signals, and we see 
that the attention is scattered over a broader region of the sequences. 
Figure 2D gives an example of a convolutional filter that prefers hydro-
phobic amino acids. 
 

3.2 Secondary structure prediction 
After translation, proteins fold into a 3-dimensional structure, known as 
the tertiary structure (Figure 3A). Knowledge of a protein's structure can 
help to understand its function. Therefore de novo prediction of protein 
structure from sequence is a problem of great biological interest (Dill 
and MacCallum, 2012). An important step in the prediction of tertiary 
protein structure is the prediction of the secondary structure, the local 
conformations of the peptide backbone. There are three main classes of 
secondary structure: alpha-helix, beta-strand and coil. These can be 
further divided into 8 classes (Kabsch and Sander, 1983) (3 sub-classes 
of helix, 2 sub-classes of strands and 3 sub-classes of coil). 
 
Secondary structure prediction is a many-to-many problem or sequence-
tagging problem because we predict the secondary structure class for 
each amino acid in the protein sequence. The state of the art sequence-
based method to solve this problem is DeepCNF (Wang et al., 2016) 
which is based on a combination of deep convolutional neural networks 
and conditional neural fields.  

Fig 3. A) Visualization of the task of secondary structure prediction based on the protein 
amino acid sequence. B) A flowchart showing the succession of different layers in our 
neural network model to predict protein secondary structure. The skip connection is 
implemented by concatenating the output of the CNN layer with amino acid input. C) 
Performance of our model compared to the state of the art DeepCNF (Wang et al., 2016) 
method.  

 
The architecture of our neural network to predict secondary is shown in 
Figure 3B and is a combination of convolutional and LSTM neural net-
works (Sønderby and Winther, 2014). The attention step is omitted here 
because the information in input and output to a high degree is co-
located. Using either a CNN layer and/or a skip layer makes no large 
difference for this application. Here, we report the CNN plus skip results. 
An ensemble of neural networks was trained on the same data as 
DeepCNF. The performance of our neural network ensemble is given in 
Figure 3C and reaches a Q8 accuracy of 0.702, thus outperforming 
DeepCNF. 
 
3.3 Predicting peptides binding to MHC Class II molecules  
    
MHC class II molecules (MHCII) are an essential part of the adaptive 
immune system and involved in the detection of extracellular pathogens. 
They present peptides derived from proteins of the extracellular envi-
ronment to T-helper cells (see Figure 4A). A peptide can only be recog-
nized by a T cell, i.e. be a T cell epitope, if it is able to bind an MHCII  
molecule expressed by the host (Roche and Furuta, 2015). When inter-
ested in predicting an immune response to pathogens, the prediction of 
peptides binding to MHCII molecules is an important step, since only a 

small fraction of all peptides are able to bind to MHCII molecules 
(Castellino et al., 1997). Peptides binding to MHCII molecules can differ 
greatly in length greatly since the binding cleft of the MHCII molecules 
is open on both sides, allowing the peptide to extend beyond the binding 
cleft. Further, the binding core of a peptide, which has a length of ap-
proximately 9 amino acids, can be located anywhere within the peptide 
(Nielsen et al., 2010). 

Fig 4: A) MHCII molecules present peptides derived from the extracellular environment 
to T-helper cells. Here we predict which peptides are able to bind a given MHCII mole-
cule, which is an important step on the way to identifying T-cell epitopes. B) The CNN 
(left side) and LSTM (right side) architectures used to predict peptide binding to MHCII 
molecules. C) Performance per MHCII allele of NetMHCIIpan-3.0, CNN+LSTM and the 
consensus method (NetMHCIIpan-3.0 and CNN+LSTM) on the evaluation set. 

 
The state of the art method for predicting peptide binding to MHCII 
molecules is NetMHCIIpan-3.0 (Karosiene et al., 2013), which relies on 
an ensemble of feed forward neural networks trained by an algorithm 
tailored to the problem (Andreatta et al., 2011; Nielsen and Lund, 2009). 
    
Here, we trained an ensemble of CNNs and LSTMs to predict peptide 
binding to MHCII molecules. The LSTM is uni-directional and attention 
is omitted because the peptide sequences are so short. The neural net-
work architectures are visualized in Figure 4B. All models were trained 
on the data set and data set partitions used to develop the NetMHCIIpan 
method. An ensemble of CNNs and LSTMs achieved performance on 
par with NetMHCIIpan-3.0 on both testing and evaluation data. Further, 
combining feed forward nets trained in the NetMHCIIpan fashion with 
CNN and LSTM networks to form a consensus method significantly 
improved performance. Figure 4C shows the performance of the consen-
sus method for individual MHCII molecules in the evaluation set.   

4 Discussion 
The regained interest in deep neural network architectures within ma-
chine learning fields such as image and speech recognition is only slowly 
spreading into biology and bioinformatics. One potential cause of this is 
the lack of examples or code templates tailored to bioinformatics prob-
lems combined with the notion that the implementation and training of 
deep learning methods is complicated and computationally challenging. 
Here, we have aimed to help overcome these barriers by demonstrating 

Model Q8 Accuracy

Deep CNF 0.683

6 model ensemble 0.702

A B

C

NetMHCIIpan-3.0 CNN+LSTM Consensus
Allele # # bind PCC AUC PCC AUC PCC AUC

DRB1-0101 717 550 0.809 0.898 0.801 0.902 0.821 0.909
DRB1-0301 703 408 0.702 0.851 0.680 0.846 0.708 0.859
DRB1-0701 682 375 0.755 0.872 0.744 0.873 0.761 0.879
DRB1-0801 838 363 0.718 0.87 0.745 0.880 0.752 0.883
DRB1-1101 813 426 0.788 0.903 0.793 0.901 0.8 0.905
DRB1-1301 803 462 0.563 0.782 0.609 0.800 0.609 0.804
DRB1-1302 765 404 0.38 0.704 0.431 0.733 0.424 0.729
DRB1-1501 758 218 0.49 0.762 0.500 0.764 0.506 0.767
DRB3-0202 726 288 0.489 0.755 0.489 0.758 0.499 0.76
DRB3-0301 782 449 0.556 0.773 0.45 0.722 0.515 0.754
DRB4-0101 778 235 0.275 0.232 0.632 0.64 0.267 0.646
DRB4-0103 764 474 0.538 0.799 0.539 0.793 0.55 0.802
DRB5-0101 731 461 0.691 0.835 0.695 0.842 0.706 0.845

mean 0.596 0.803 0.593 0.803 0.609 0.811

A B

C
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how simple code can easily and effectively be developed to train CNN 
and LSTM neural network models to predict properties of important 
biological problems. We have done this for three distinct biological 
problems: predictions of subcellular localization, secondary structure and 
peptide binding to MHCII molecules, and in all cases demonstrated state 
of the art performance.   
 
We have performed all model development and evaluation using the 
Lasagne library. However, our findings are general and we expect com-
parable results could have been obtained using any of the currently 
available frameworks for deep learning.  
 
The applications we have chosen are all described by protein data. It is 
however clear that the framework is equally suited to work on any type 
of sequence data, for example nucleotide sequences (Leung et al., 2014). 
Others have also applied similar models to images of biological or medi-
cal relevance (Cha et al., 2016; Moeskops et al., 2016).  
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