

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 01, 2019

An introduction to Deep learning on biological sequence data - Examples and
solutions

Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten; Almagro Armenteros, Jose
Juan; Nielsen, Henrik; Kaae Sønderby, Casper; Winther, Ole; Kaae Sønderby, Søren
Published in:
Bioinformatics

Link to article, DOI:
10.1093/bioinformatics/btx531

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jurtz, V. I., Johansen, A. R., Nielsen, M., Almagro Armenteros, J. J., Nielsen, H., Kaae Sønderby, C., ... Kaae
Sønderby, S. (2017). An introduction to Deep learning on biological sequence data - Examples and solutions.
Bioinformatics, 33(22), 3685-3690. DOI: 10.1093/bioinformatics/btx531

https://doi.org/10.1093/bioinformatics/btx531
http://orbit.dtu.dk/en/publications/an-introduction-to-deep-learning-on-biological-sequence-data--examples-and-solutions(3acab31d-577a-4fcd-aba6-979284aac27a).html

Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Manuscript Category

Subject Section
An introduction to Deep learning on biological
sequence data – Examples and solutions
Vanessa Isabell Jurtz1, Alexander Rosenberg Johansen2, Morten Nielsen1,4,
Jose Juan Almagro Armenteros1, Henrik Nielsen1, Casper Kaae Sønderby3,
Ole Winther2,3*, Søren Kaae Sønderby3,*

1Department of Bio and Health Informatics, Technical University of Denmark, 2Department of Applied
Mathematics and Computer Science, Technical University of Denmark, 3Department of Biology, Uni-
versity of Copenhagen, and 4Instituto de Investigaciones Biotecnológicas, Universidad Nacional de
San Martín, Buenos Aires, Argentina

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: Deep neural network architectures such as convolutional and long short-term memory
networks have become increasingly popular as machine learning tools during the recent years. The
availability of greater computational resources, more data, new algorithms for training deep models
and easy to use libraries for implementation and training of neural networks are the drivers of this
development. The use of deep learning has been especially successful in image recognition; and the
development of tools, applications and code examples are in most cases centered within this field
rather than within biology.
Results: Here, we aim to further the development of deep learning methods within biology by provid-
ing application examples and ready to apply and adapt code templates. Given such examples, we
illustrate how architectures consisting of convolutional and long short-term memory neural networks
can relatively easily be designed and trained to state-of-the-art performance on three biological se-
quence problems: prediction of subcellular localization, protein secondary structure and the binding of
peptides to MHC Class II molecules.
Availability: All implementations and datasets are available online to the scientific community at
https://github.com/vanessajurtz/lasagne4bio.
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online.

1 Introduction
Machine learning is a specialization of computer science closely related
to pattern recognition, data science, data mining and artificial intelli-
gence (Machine Learning -Encyclopedia Britannica, 2016). Within the
field of machine learning, artificial neural networks, inspired by biologi-
cal neural networks, have in recent years regained popularity
(Schmidhuber, 2015). Their most recent success began with the devel-
opment of effective methods to train deep neural networks (networks
with multiple hidden layers), and the coining of the term deep learning
around 2006 (Hinton and Salakhutdinov, 2006; Schmidhuber, 2015).

Since then improvements have been made in part enabled by the access
to greater computational resources, especially graphics processing units
(GPU), enabling training of deep neural networks containing many pa-
rameters in reasonable time. Given this, specialized neural network
architectures like convolutional neural networks (CNN) and recurrent
neural networks (RNN) with long short-term memory cells (LSTM) can
now be trained efficiently and have been successfully applied to many
problems including image recognition (Ciresan et al., 2011; Krizhevsky
et al., 2012) and natural language processing tasks such as speech recog-
nition (Geiger et al., 2014) and language translation (Sutskever et al.,
2014).

Jurtz et al.

 Fig. 1. A) Feed forward network. Amino Acids C,A,D,A,D are encoded as “one-hot”
vectors with a 1 at the position corresponding to the amino acid type (A, C or D), and zero
otherwise. B) Convolutional neural network. A filter (blue) is slid over the input se-
quence. The filter here has a length of three amino acids. At each position the filter has a
preference for different amino acid types. The filter output is calculated by taking the sum
of the element-wise product of the input and the filter position-specific weights. Each
time the filter is moved, it feeds into a different hidden neuron in the hidden layer, here
visualized in the f1 row. Multiple filters will give multiple inputs to the next layer {f1, f2,
f3…}. C) A filter can be visualized as a sequence motif. This helps to understand which
amino acids the filter prefers at each sequence position. When the filter is slid over the
input sequence, it functions as motif detector and becomes activated when the input
matches its preference. For example, this filter has negative output for sub-sequences
ADC and positive for DCD.

The successes of neural networks have led to the development of various
programming frameworks to build and train neural networks. Examples
are PyTorch (http://pytorch.org/), Caffe (http://caffe.berkeleyvision.org)
and TensorFlow (https://www.tensorflow.org). Our framework of choice
here is Lasagne (Dieleman et al., 2015), a well-established easy to use
and extremely flexible lightweight Python library built on top of the
Theano numerical computation library (Bastien et al., 2012). While most
other frameworks require the user to learn a dedicated programming
language, Lasagne is Python-based and therefore relatively easy to use
for bioinformaticians already programming in Python. Further Lasagne’s
active community ensures that the latest neural network training algo-
rithms and architectures are available to the user.

Within bioinformatics, examples of deep learning applications include
prediction of splicing patterns (Leung et al., 2014), DNA and RNA
targets of regulatory proteins (Alipanahi et al., 2015), protein secondary
structure (Wang et al., 2016) and biomedical image analysis (Moeskops
et al., 2016; Cha et al., 2016). However, the number of applications is
still relatively small, and the application of deep learning methods within
biology is in our view being held back due to a lack of examples and
programming templates with a biological background facilitating a head
start on the use of these libraries for non-experts.

Here, we seek to alter this by providing a non-expert introduction to the
field of deep neural networks with application examples and ready to
apply and adapt code templates illustrating how convolutional and
LSTM neural networks can be successfully designed and trained on
biological data to achieve state-of-the-art performance in prediction of 1)
protein subcellular localization, 2) protein secondary structure, and 3)
peptides binding to Major Histocompatibility Complex Class II mole-
cules. Implementations of the methods are available online to be used by
non-expert end-users as templates for developing models to describe a

given problem of interest https://github.com/vanessajurtz/lasagne4bio.
The code can run both on CPU and cuda-enabled GPU. GPU gives of the
order of a 100fold speed-up.

2 Deep learning background
The traditional neural network architecture is the feed forward neural
network with one hidden layer, in which each input neuron is connected
to each neuron in the hidden layer and each neuron in the hidden layer is
in turn connected to each neuron in the output layer. A non-linear so-
called activation function, most often tanh or sigmoid, is applied to give
the output of a neuron given its input. For classification problems the
number of units in the output layer is equal to the number of classes. The
softmax function is often used to make the outputs probabilistic, that is
given an input the network assigns a probability to each class. For the
prediction of a continuous output, a single linear output neuron is typi-
cally used. All connections in the network are directed from input to
output, and it is possible to build deep networks by adding more hidden
layers where each neuron will be connected to each neuron in the follow-
ing layer. This type of architecture is visualized in Figure 1A. The hid-
den layer of a feed forward neural network is also referred to as a dense
layer, because is fully connected to the previous layer.

In convolutional neural networks (CNNs) information also flows only
from the input to the output, layer by layer. They are however not fully
connected, but instead slide a filter (a set of weights) over the input that
feeds into a different neuron in the next layer each time it is moved as
illustrated in Figure 1B. The filter will thereby identify features in input
irrespectively of where they appear. This concept is visualized in Figure
1C using the example of a convolutional filter detecting a motif in an
amino acid sequence. Pooling such as mean pooling (averaging of near-
by positions) enables the network to become invariant to small local
deformations in the input. Convolutional neural networks often consist of
many convolutional filters and many convolutional and pooling layers to
enable the network to integrate the information from the different filters
and various levels of abstraction (LeCun et al., 2015). When applied to
biological problems, convolutional neural networks are ideally suited to
locate motifs, for example in a protein sequence, independent of their
position within the sequence.

Recurrent neural networks (RNNs) are neural network models for se-
quential data. In addition to the feed forward connections they have time-
delayed connections between the neurons of a hidden layer (Graves,
2012). RNNs process the sequence one element at a time, in biological
sequence context one residue after the other. The information therefore
flows both from input to output and along the sequence. In this way
memory is generated and the neural network gains the ability to store and
integrate information from past inputs. Long short-term memory
(LSTM) neural networks are a special type of RNNs in which the scalar-
valued hidden neuron is replaced with the LSTM memory block. The
LSTM memory block is inspired by a computer memory cell where
context-dependent input, output and forget gates control what is written
to, read from and kept in the cell in each time-step. In this way, it is
easier for the network to store a given input over many time steps.

LSTMs (and in general RNNs) can by construction handle input se-
quences of varying length. This makes RNNs highly flexible for differ-
ent types of tasks where either the input (many-to-one), the output (one-
to-many) or both are sequences (many-to-many). Many-to-one is a
model to process an entire sequence one amino acid at a time and then

A B

C

Deep learning on biological sequence data

predict whether or not it has a certain biological property after having
seen the entire sequence (here exemplified in the prediction of peptide
binding to MHCII). The many-to-many approach, also known as tagging
or sequence labeling, can for example be used to predict the secondary
structure classification of each amino acid in a protein. Performance can
be improved by changing to the many-to-many bidirectional approach
(biLSTM) where the network processes the input sequence forwards and
backwards and bases each prediction not just on what came before the
current position but also on what comes after. The same approach can be
used in a many-to-one approach here exemplified in protein subcellular
localization prediction.

For a more detailed explanation of the CNN and LSTM architectures,
including the mathematical formulas to calculate the output and update
weights, we refer the reader to textbook “Deep Learning” by Goodfellow
et al. (2016).

2.1 Designing your model
In this section, we highlight some of the key issues to consider when
constructing deep neural networks such as how to avoid overfitting when
increasing network size and depth.

2.1.1 Sequence encoding

When working with biological sequence data the numeric representation
of the data influences model performance. An obvious solution is to use
the so-called sparse or one-hot encoding (see Figure 1A), where an ami-
no acid is represented by a vector of the length 20, containing a single
one and 19 zeros. The parameters connecting an amino acid input to the
first hidden layer is often called the embedding for that amino acid.
Another possibility is to use the BLOSUM matrix (Eddy, 2004) for
encoding, representing each amino acid by its corresponding row in the
BLOSUM matrix. The BLOSUM matrix captures information about
which pairs of amino acids are easily interchangeable during evolution,
but it does not capture information about the evolutionary constraints on
a protein family (i.e. which amino acid positions are highly conserved
and which are variable). This information can effectively be captured in
a sequence profile. A sequence profile has the dimensions protein length
times the number of amino acids and is conventionally generated by
running PSI-BLAST (Altschul et al., 1997) against a reference database.
Encoding protein sequences as such profiles has demonstrated very
helpful for prediction of for instance secondary structure (Jones, 1999).

2.1.2 Regularization and training
Regularization techniques aim to prevent overfitting and are especially
relevant for large models containing many parameters. Before applying
regularization techniques it is important to partition the dataset carefully
dealing with data redundancy and set up the neural network training
using cross-validation (further detailed in the supplementary materials).
Dropout (Hinton et al., 2012) reduces overfitting by introducing discrete
noise during training. For every training input the output of each hidden
unit is set to zero with a certain preselected probability. Batch normaliza-
tion (Ioffe and Szegedy, 2015) re-parameterizes the hidden unit activa-
tion in order to increase convergence speed but also makes the output
stochastic, creating a regularizing effect. Appropriate weight initializa-
tion (Glorot and Bengio, 2010) and gradient optimization techniques
(e.g. Adam (Kingma and Ba, 2014)) also influence the overall perfor-
mance. Combining ensembles of 5-10 models initialized with different
random seeds usually leads to a substantial increase in performance.

2.1.3 Attention
In standard many-to-one RNNs, the last hidden state is most often used
as input to a downstream network. However, when certain subparts of
the input sequence contain most of the predictive information, this ap-
proach is suboptimal. Here, it will be beneficial to add attention
weighting (Bahdanau et al., 2014; Jaderberg et al., 2015) (as illustrated
in Figure 2B). Attention is implemented by learning a context dependent
normalized weight for each hidden state of the input sequence. The input
to the downstream network is then the weighted average over all hidden
states. This normalized weight is computed in two steps: 1) a one hidden
layer dense network takes each hidden state of the RNN as input and 2)
passes these network outputs through a softmax function. In one of the
examples shown later, we use such attention to visualize and identify
parts of a protein sequence that are important for subcellular localization
prediction.

2.1.4 Pooling
Max-pooling provides a way of reducing the input or hidden layer size
by selecting only the maximally activated neuron from a number of
neighboring neurons. Alternatively mean pooling can be performed
where the mean activation is calculated among neighboring neurons.
Pooling is often used in convolutional neural networks (LeCun et al.,
2015). To make a convolutional neural network independent of the input
sequence length, global max-pooling can be applied where only the
maximally activated neuron of the input or hidden layer is selected for
each of the convolutional filters. In this way, the number of hidden neu-
rons generated by the convolutional filters is equal to the number of
filters and not influenced by the input sequence length.

3 Example biological applications
To demonstrate the usefulness of the CNN and LSTM neural network
architectures for machine learning on biological data, we have applied
the framework to three important biological problems: subcellular locali-
zation, protein secondary structure and peptide binding to MHC Class II
(MHCII) molecules. The details of the data, models and training and
testing procedure are described in the supplementary materials. Note,
however that not all problems are equally suited for analyses using deep
neural network methods (the limiting factor in most cases being the
amount of data available), and that definition of optimal network archi-
tectures (guided by biological insights) and training protocols is as im-
portant for a successful application as the choice of deep learning meth-
od. An in-depth coverage of these themes is however beyond the scope
of this manuscript. However, a generally good starting architecture for
machine learning on biological sequence data has an input-to-output
structure as shown in Figure 2B: Encoded seq-to-CNN-to-biLSTM-to-
Attention-to-Dense-to-Output. Dependent upon the problem at hand, one
may omit architecture elements or introduce skip connections as shown
in Figure 3B. In the online material, we have included Jupyter Notebook
implementations of different models starting from a simple dense feed
forward model up to a full model including CNN, LSTM and attention to
illustrate the contribution of each architectural element. This is discussed
in more detail below.

3.1 Subcellular localization

Jurtz et al.

In eukaryotes, proteins are either secreted from the cell or sorted into
numerous different cellular sub-compartments such as e.g. nucleus,
cytoplasm and Golgi (see Figure 2A). For some locations, the proteins
are known to contain specific sequence motifs, where the best under-
stood signal is the N-terminal signal peptide in proteins belonging to the
secretory pathway. However, other subcellular compartments are also
known to contain weaker signals such as the nuclear localization signal
in nuclear proteins, membrane crossing alpha-helices in membrane pro-
teins or KDEL-type retention signals for endoplasmic reticulum proteins
(Lodish et al., 2016).

Fig. 2. A) Schematic illustration of subcellular localization classification. B) The neural
network architecture used to predict the subcellular localization of proteins. C) Visualiza-
tion of the positions within the protein amino acid sequence that have high importance for
the prediction of subcellular localization. Sequence position importance is determined by
an attention function and the middle part of the protein sequences have been cut out in
order to align N- and C-terminus. The different subcellular localization classes are shown
on the y-axis. D) Table of the A-LSTM performance compared to the state of the art
sequence driven SVM prediction method MultiLoc. E) Visualization of convolutional
filter. For this filter charged amino acids will suppress the output (blue, red) while hydro-
phobic amino acids will increase the output (black). C) and D) are adapted from
(Sønderby et al., 2015).

The task of predicting protein sorting or subcellular localization has
attracted large interest in the bioinformatics field (Emanuelsson et al.,
2007) and can be generally stated as a sequence to multi-class prediction
problem. The state of the art data driven approach for prediction of sub-
cellular location of proteins is MultiLoc (Höglund et al., 2006), which is
based on support vector machines (SVM) taking into account N-terminal
targeting regions, amino acid composition and protein sequence motifs.
The SherLoc2 method (Briesemeister et al., 2009) combines the se-
quence-based MultiLoc method with text mining approaches and the
inclusion of Gene Ontology (GO) terms to improve performance.

We have implemented four models (see online Jupyter Notebooks) start-
ing from a simple feed forward (FNN) dense model up to the full model
including CNN, LSTM and attention architecture visualized in Figure 2B
and called A-LSTM in the following. We apply these models to a re-
duced version of the subcellular localization dataset to illustrate the
effect of hyper parameter choices and network architecture on predictive
performance and running times. In this example, the model with the
lowest performance was FFN, with a classification accuracy fraction
(Acc) of 0.757. The CNN and CNN-LSTM models followed with an
accuracy of 0.783 and 0.814, respectively. Finally, the model with the

highest accuracy was the A-LSTM with Acc=0.830. If we evaluate the
performance for the different prediction classes for the four models, we
do not see large differences for the classes characterized with many
proteins (data not shown). However, the A-LSTM demonstrates im-
proved performance for classes characterized with very few examples,
such as ER, Golgi apparatus, lysosome and vacuole. The main drawback
of the models using LSTM layers compare to the FFN and CNN is the
training time. On average, LSTM models take 10 to 12 seconds per
epoch, whereas FFN takes 0.3 seconds and CNN takes 2.5 seconds. This
could be a limiting factor with more data or a more complex architecture.
In the remainder of the section, we discuss the findings for A-LSTM
trained on the entire MultiLoc dataset.

In the subcellular localization problem, the position of the sorting signal
is often of interest to the biologists. LSTM neural networks combined
with an attention function are ideally suited to solve this task. The model
presented here is a modified and improved version of the one presented
by Sønderby et al. (2015). The architecture of our A-LSTM neural net-
work is visualized in Figure 2B and is based on a convolutional layer
followed by a bi-directional LSTM. Additionally, we applied an atten-
tion function after the LSTM allowing us to assign an importance to each
position in a protein sequence with regards to subcellular location. Here,
we calculate the activations of the LSTM memory blocks (hidden state)
for each position in the protein sequence, and apply the attention func-
tion to determine the importance of each hidden state (giving an indica-
tion of the importance of the underlying position in the input sequence).
Next, we calculate the attention weighted sum of all hidden states that
are used as input to a dense feed forward neural network with one hidden
layer and softmax output to obtain the final prediction of subcellular
localization. All models were trained on the same dataset as the Mul-
tiLoc method described above.

The reasoning behind this choice of architecture is based upon the fol-
lowing idealized flow of information from discriminative subsequences
to classification: The CNN filters deal with the issue of sequence align-
ment, and provide a learned filter-bank sensitive to specific sequence
motives. When such a motif is present somewhere in the sequence, it will
lead to an increased absolute input to the LSTM at that position. The
biLSTM layers will integrate this information locally both forward and
backward in the sequence and the attention function uses its learned
context awareness to pass the discriminatory information from these
RNN hidden states on to the dense layer and then to the softmax classifi-
cation.

A-LSTM achieved an accuracy of Acc=0.914, outperforming the Mul-
tiLoc method which had an Acc=0.767. SherLoc2 outperformed our
models with an Acc=0.93. However, SherLoc2 is not purely sequence
data driven but also includes text-mining approaches, and we hypothe-
size extending our A-LSTM ensemble in that way would improve per-
formance further.

In Figure 2C, we illustrate where in the sequence the A-LSTM model
assigns weight for proteins belonging to different subcellular compart-
ments. Sequences from the compartments ER, extracellular, lysosomal,
and vacuolar have clearly marked N-terminal signal peptides. Chloro-
plast and mitochondrial proteins also have N-terminal sorting signals.
For the plasma membrane category, we observe that some proteins have
signal peptides, while the model generally focuses on sections, presuma-
bly transmembrane helices, scattered across the rest of the protein se-
quence with some overabundance close to the C-terminus. Cytoplasmic

Deep learning on biological sequence data

and nuclear proteins do not have N-terminal sorting signals, and we see
that the attention is scattered over a broader region of the sequences.
Figure 2D gives an example of a convolutional filter that prefers hydro-
phobic amino acids.

3.2 Secondary structure prediction
After translation, proteins fold into a 3-dimensional structure, known as
the tertiary structure (Figure 3A). Knowledge of a protein's structure can
help to understand its function. Therefore de novo prediction of protein
structure from sequence is a problem of great biological interest (Dill
and MacCallum, 2012). An important step in the prediction of tertiary
protein structure is the prediction of the secondary structure, the local
conformations of the peptide backbone. There are three main classes of
secondary structure: alpha-helix, beta-strand and coil. These can be
further divided into 8 classes (Kabsch and Sander, 1983) (3 sub-classes
of helix, 2 sub-classes of strands and 3 sub-classes of coil).

Secondary structure prediction is a many-to-many problem or sequence-
tagging problem because we predict the secondary structure class for
each amino acid in the protein sequence. The state of the art sequence-
based method to solve this problem is DeepCNF (Wang et al., 2016)
which is based on a combination of deep convolutional neural networks
and conditional neural fields.

Fig 3. A) Visualization of the task of secondary structure prediction based on the protein
amino acid sequence. B) A flowchart showing the succession of different layers in our
neural network model to predict protein secondary structure. The skip connection is
implemented by concatenating the output of the CNN layer with amino acid input. C)
Performance of our model compared to the state of the art DeepCNF (Wang et al., 2016)
method.

The architecture of our neural network to predict secondary is shown in
Figure 3B and is a combination of convolutional and LSTM neural net-
works (Sønderby and Winther, 2014). The attention step is omitted here
because the information in input and output to a high degree is co-
located. Using either a CNN layer and/or a skip layer makes no large
difference for this application. Here, we report the CNN plus skip results.
An ensemble of neural networks was trained on the same data as
DeepCNF. The performance of our neural network ensemble is given in
Figure 3C and reaches a Q8 accuracy of 0.702, thus outperforming
DeepCNF.

3.3 Predicting peptides binding to MHC Class II molecules

MHC class II molecules (MHCII) are an essential part of the adaptive
immune system and involved in the detection of extracellular pathogens.
They present peptides derived from proteins of the extracellular envi-
ronment to T-helper cells (see Figure 4A). A peptide can only be recog-
nized by a T cell, i.e. be a T cell epitope, if it is able to bind an MHCII
molecule expressed by the host (Roche and Furuta, 2015). When inter-
ested in predicting an immune response to pathogens, the prediction of
peptides binding to MHCII molecules is an important step, since only a

small fraction of all peptides are able to bind to MHCII molecules
(Castellino et al., 1997). Peptides binding to MHCII molecules can differ
greatly in length greatly since the binding cleft of the MHCII molecules
is open on both sides, allowing the peptide to extend beyond the binding
cleft. Further, the binding core of a peptide, which has a length of ap-
proximately 9 amino acids, can be located anywhere within the peptide
(Nielsen et al., 2010).

Fig 4: A) MHCII molecules present peptides derived from the extracellular environment
to T-helper cells. Here we predict which peptides are able to bind a given MHCII mole-
cule, which is an important step on the way to identifying T-cell epitopes. B) The CNN
(left side) and LSTM (right side) architectures used to predict peptide binding to MHCII
molecules. C) Performance per MHCII allele of NetMHCIIpan-3.0, CNN+LSTM and the
consensus method (NetMHCIIpan-3.0 and CNN+LSTM) on the evaluation set.

The state of the art method for predicting peptide binding to MHCII
molecules is NetMHCIIpan-3.0 (Karosiene et al., 2013), which relies on
an ensemble of feed forward neural networks trained by an algorithm
tailored to the problem (Andreatta et al., 2011; Nielsen and Lund, 2009).

Here, we trained an ensemble of CNNs and LSTMs to predict peptide
binding to MHCII molecules. The LSTM is uni-directional and attention
is omitted because the peptide sequences are so short. The neural net-
work architectures are visualized in Figure 4B. All models were trained
on the data set and data set partitions used to develop the NetMHCIIpan
method. An ensemble of CNNs and LSTMs achieved performance on
par with NetMHCIIpan-3.0 on both testing and evaluation data. Further,
combining feed forward nets trained in the NetMHCIIpan fashion with
CNN and LSTM networks to form a consensus method significantly
improved performance. Figure 4C shows the performance of the consen-
sus method for individual MHCII molecules in the evaluation set.

4 Discussion
The regained interest in deep neural network architectures within ma-
chine learning fields such as image and speech recognition is only slowly
spreading into biology and bioinformatics. One potential cause of this is
the lack of examples or code templates tailored to bioinformatics prob-
lems combined with the notion that the implementation and training of
deep learning methods is complicated and computationally challenging.
Here, we have aimed to help overcome these barriers by demonstrating

Model Q8 Accuracy

Deep CNF 0.683

6 model ensemble 0.702

A B

C

NetMHCIIpan-3.0 CNN+LSTM Consensus
Allele # # bind PCC AUC PCC AUC PCC AUC

DRB1-0101 717 550 0.809 0.898 0.801 0.902 0.821 0.909
DRB1-0301 703 408 0.702 0.851 0.680 0.846 0.708 0.859
DRB1-0701 682 375 0.755 0.872 0.744 0.873 0.761 0.879
DRB1-0801 838 363 0.718 0.87 0.745 0.880 0.752 0.883
DRB1-1101 813 426 0.788 0.903 0.793 0.901 0.8 0.905
DRB1-1301 803 462 0.563 0.782 0.609 0.800 0.609 0.804
DRB1-1302 765 404 0.38 0.704 0.431 0.733 0.424 0.729
DRB1-1501 758 218 0.49 0.762 0.500 0.764 0.506 0.767
DRB3-0202 726 288 0.489 0.755 0.489 0.758 0.499 0.76
DRB3-0301 782 449 0.556 0.773 0.45 0.722 0.515 0.754
DRB4-0101 778 235 0.275 0.232 0.632 0.64 0.267 0.646
DRB4-0103 764 474 0.538 0.799 0.539 0.793 0.55 0.802
DRB5-0101 731 461 0.691 0.835 0.695 0.842 0.706 0.845

mean 0.596 0.803 0.593 0.803 0.609 0.811

A B

C

Jurtz et al.

how simple code can easily and effectively be developed to train CNN
and LSTM neural network models to predict properties of important
biological problems. We have done this for three distinct biological
problems: predictions of subcellular localization, secondary structure and
peptide binding to MHCII molecules, and in all cases demonstrated state
of the art performance.

We have performed all model development and evaluation using the
Lasagne library. However, our findings are general and we expect com-
parable results could have been obtained using any of the currently
available frameworks for deep learning.

The applications we have chosen are all described by protein data. It is
however clear that the framework is equally suited to work on any type
of sequence data, for example nucleotide sequences (Leung et al., 2014).
Others have also applied similar models to images of biological or medi-
cal relevance (Cha et al., 2016; Moeskops et al., 2016).

Funding
This	 work	 has	 been	 supported	 by	 the	 the	 National	 Institute	 of	 Allergy	 and	
Infectious	 Diseases,	 National	 Institutes	 of	 Health,	 Department	 of	 Health	 and	
Human	Services	under	Contracts	HHSN272201200010C.	We	thank	the	NVIDIA	
Corporation	for	the	donation	of	Titan	X	GPUs.		
	
Conflict	of	Interest:	none	declared.

References
Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and RNA-

binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucleic Acids Res., 25, 3389–402.
Andreatta,M. et al. (2011) NNAlign: a web-based prediction method allowing non-

expert end-user discovery of sequence motifs in quantitative peptide data.
PLoS One, 6, e26781.

Bahdanau,D. et al. (2014) Neural Machine Translation by Jointly Learning to Align
and Translate.

Bastien,F. et al. (2012) Theano: new features and speed improvements.
Briesemeister,S. et al. (2009) SherLoc2: a high-accuracy hybrid method for

predicting subcellular localization of proteins. J. Proteome Res., 8, 5363–
6.

Castellino,F. et al. (1997) Antigen presentation by MHC class II molecules:
invariant chain function, protein trafficking, and the molecular basis of
diverse determinant capture. Hum. Immunol., 54, 159–69.

Cha,K.H. et al. (2016) Urinary bladder segmentation in CT urography using deep-
learning convolutional neural network and level sets. Med. Phys., 43,
1882.

Ciresan,D. et al. (2011) A committee of neural networks for traffic sign
classification. In, The 2011 International Joint Conference on Neural
Networks. IEEE, pp. 1918–1921.

Dieleman,S. et al. (2015) Lasagne: First release.
Dill,K.A. and MacCallum,J.L. (2012) The protein-folding problem, 50 years on.

Science, 338, 1042–6.
Eddy,S.R. (2004) Where did the BLOSUM62 alignment score matrix come from?

Nat. Biotechnol., 22, 1035–1036.
Emanuelsson,O. et al. (2007) Locating proteins in the cell using TargetP, SignalP

and related tools. Nat. Protoc., 2, 953–71.
Geiger,J.T. et al. (2014) Robust Speech Recognition using Long Short-Term

Memory Recurrent Neural Networks for Hybrid Acoustic Modelling. In,
Interspeech ISCA Singapore.

Glorot,X. and Bengio,Y. (2010) Understanding the difficulty of training deep
feedforward neural networks. In, In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS’10). Society
for Artificial Intelligence and Statistics.

Goodfellow,I. et al. (2016) Deep Learning.

Graves,A. (2012) Supervised Sequence Labelling with Recurrent Neural Networks
Springer Berlin Heidelberg, Berlin, Heidelberg.

Hinton,G.E. et al. (2012) Improving neural networks by preventing co-adaptation
of feature detectors.

Hinton,G.E. and Salakhutdinov,R.R. (2006) Reducing the dimensionality of data
with neural networks. Science, 313, 504–7.

Höglund,A. et al. (2006) MultiLoc: prediction of protein subcellular localization
using N-terminal targeting sequences, sequence motifs and amino acid
composition. Bioinformatics, 22, 1158–65.

Ioffe,S. and Szegedy,C. (2015) Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.

Jaderberg,M. et al. (2015) Spatial Transformer Networks.
Jones,D.T. (1999) Protein secondary structure prediction based on position-specific

scoring matrices. J. Mol. Biol., 292, 195–202.
Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers,
22, 2577–637.

Karosiene,E. et al. (2013) NetMHCIIpan-3.0, a common pan-specific MHC class II
prediction method including all three human MHC class II isotypes, HLA-
DR, HLA-DP and HLA-DQ. Immunogenetics, 65, 711–24.

Kingma,D. and Ba,J. (2014) Adam: A Method for Stochastic Optimization.
Krizhevsky,A. et al. (2012) ImageNet Classification with Deep Convolutional

Neural Networks. In, Pereira,F. et al. (eds), Advances in Neural
Information Processing Systems 25. Curran Associates, Inc., pp. 1097–
1105.

LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436–44.
Leung,M.K.K. et al. (2014) Deep learning of the tissue-regulated splicing code.

Bioinformatics, 30, i121-9.
Lodish,H. et al. (2016) Molecular Cell Biology 8th ed. W. H. Freeman.
Machine Learning -Encyclopedia Britannica (2016).
Moeskops,P. et al. (2016) Automatic segmentation of MR brain images with a

convolutional neural network. IEEE Trans. Med. Imaging.
Nielsen,M. et al. (2010) MHC class II epitope predictive algorithms. Immunology,

130, 319–28.
Nielsen,M. and Lund,O. (2009) NN-align. An artificial neural network-based

alignment algorithm for MHC class II peptide binding prediction. BMC
Bioinformatics, 10, 296.

Roche,P.A. and Furuta,K. (2015) The ins and outs of MHC class II-mediated
antigen processing and presentation. Nat. Rev. Immunol., 15, 203–16.

Schmidhuber,J. (2015) Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

Sønderby,S.K. et al. (2015) Convolutional LSTM Networks for Subcellular
Localization of Proteins. In, Dediu,A.-H. et al. (eds), Algorithms for
Computational Biology. Springer International Publishing, pp. 68–80.

Sønderby,S.K. and Winther,O. (2014) Protein Secondary Structure Prediction with
Long Short Term Memory Networks. arXiv:1412.7828

Sutskever,I. et al. (2014) Sequence to Sequence Learning with Neural Networks.
In, Ghahramani,Z. et al. (eds), Advances in Neural Information Processing
Systems. Curran Associates, Inc., pp. 3104–3112.

Wang,S. et al. (2016) Protein Secondary Structure Prediction Using Deep
Convolutional Neural Fields. Sci. Rep., 6, 18962.

