270 research outputs found
The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff
The concept of pulled fronts with a cutoff has been introduced to
model the effects of discrete nature of the constituent particles on the
asymptotic front speed in models with continuum variables (Pulled fronts are
the fronts which propagate into an unstable state, and have an asymptotic front
speed equal to the linear spreading speed of small linear perturbations
around the unstable state). In this paper, we demonstrate that the introduction
of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear
diffusion equation with a cutoff, we show that the longest relaxation times
that govern the convergence to the asymptotic front speed and profile,
are given by , for
.Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.
Fronts with a Growth Cutoff but Speed Higher than
Fronts, propagating into an unstable state , whose asymptotic speed
is equal to the linear spreading speed of infinitesimal
perturbations about that state (so-called pulled fronts) are very sensitive to
changes in the growth rate for . It was recently found
that with a small cutoff, for ,
converges to very slowly from below, as . Here we show
that with such a cutoff {\em and} a small enhancement of the growth rate for
small behind it, one can have , {\em even} in the
limit . The effect is confirmed in a stochastic lattice model
simulation where the growth rules for a few particles per site are accordingly
modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.
Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff
Recently it has been shown that when an equation that allows so-called pulled
fronts in the mean-field limit is modelled with a stochastic model with a
finite number of particles per correlation volume, the convergence to the
speed for is extremely slow -- going only as .
In this paper, we study the front propagation in a simple stochastic lattice
model. A detailed analysis of the microscopic picture of the front dynamics
shows that for the description of the far tip of the front, one has to abandon
the idea of a uniformly translating front solution. The lattice and finite
particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the
front, while the average front behind it ``crosses over'' to a uniformly
translating solution. In this formulation, the effect of stochasticity on the
asymptotic front speed is coded in the probability distribution of the times
required for the advancement of the ``foremost bin''. We derive expressions of
these probability distributions by matching the solution of the far tip with
the uniformly translating solution behind. This matching includes various
correlation effects in a mean-field type approximation. Our results for the
probability distributions compare well to the results of stochastic numerical
simulations. This approach also allows us to deal with much smaller values of
than it is required to have the asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.
Boundary effects on localized structures in spatially extended systems
We present a general method of analyzing the influence of finite size and
boundary effects on the dynamics of localized solutions of non-linear spatially
extended systems. The dynamics of localized structures in infinite systems
involve solvability conditions that require projection onto a Goldstone mode.
Our method works by extending the solvability conditions to finite sized
systems, by incorporating the finite sized modifications of the Goldstone mode
and associated nonzero eigenvalue. We apply this method to the special case of
non-equilibrium domain walls under the influence of Dirichlet boundary
conditions in a parametrically forced complex Ginzburg Landau equation, where
we examine exotic nonuniform domain wall motion due to the influence of
boundary conditions.Comment: 9 pages, 5 figures, submitted to Physical Review
Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain
We study front propagation and diffusion in the reaction-diffusion system A
A + A on a lattice. On each lattice site at most one A
particle is allowed at any time. In this paper, we analyze the problem in the
full range of parameter space, keeping the discrete nature of the lattice and
the particles intact. Our analysis of the stochastic dynamics of the foremost
occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation
results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.
Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts
We present a (heuristic) theoretical derivation for the scaling of the
diffusion coefficient for fluctuating ``pulled'' fronts. In agreement
with earlier numerical simulations, we find that as ,
approaches zero as , where is the average number of particles per
correlation volume in the stable phase of the front. This behaviour of
stems from the shape fluctuations at the very tip of the front, and is
independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.
Propagation and Structure of Planar Streamer Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.
In the present long paper, you find the physics of the model and the
interfacial approach further explained. As a first ingredient of this approach,
we here analyze planar fronts, their profile and velocity. We encounter a
selection problem, recall some knowledge about such problems and apply it to
planar streamer fronts. We make analytical predictions on the selected front
profile and velocity and confirm them numerically.
(abbreviated abstract)Comment: 23 pages, revtex, 14 ps file
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the Ï(4S), Ï(3S), and Ï(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-âe+e- and (for the Ï(4S) only) e+e-âÎŒ+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-âe+e- and e+e-âÎŒ+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the Ï(3S) and Ï(2S) resonances, an additional uncertainty arises due to Ïâe+e-X background. For data collected off the Ï resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the Ï(4S), 0.58% (0.72%) for the Ï(3S), and 0.68% (0.88%) for the Ï(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă lâEnergie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
- âŠ