11 research outputs found

    Fry Street Quartet and Friends

    Get PDF
    The Fry Street Quartet preform with guest artists Brant Bayless on the viola, Kathryn Eberle on the violin, and Jason Hardink on the piano.https://digitalcommons.usu.edu/music_programs/1041/thumbnail.jp

    Fry Street Quartet

    Get PDF
    A performance by the Fry Street Quartet with special guests Kathryn Eberle and Jason Hardink.https://digitalcommons.usu.edu/music_programs/1226/thumbnail.jp

    Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa.

    Get PDF
    Hypophosphatasia (HPP) is a rare, inherited, systemic, metabolic disorder caused by autosomal recessive mutations or a single dominant-negative mutation in the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). The disease is associated with a broad range of signs, symptoms, and complications, including impaired skeletal mineralization, altered calcium and phosphate metabolism, recurrent fractures, pain, respiratory problems, impaired growth and mobility, premature tooth loss, developmental delay, and seizures. Asfotase alfa is a human, recombinant enzyme replacement therapy that is approved in many countries for the treatment of patients with HPP. To address the unmet need for guidance in the monitoring of patients receiving asfotase alfa, an international panel of physicians with experience in diagnosing and managing HPP convened in May 2016 to discuss treatment monitoring parameters. The panel discussions focused on recommendations for assessing and monitoring patients after the decision to treat with asfotase alfa had been made and did not include recommendations for whom to treat. Based on the consensus of panel members, this review provides guidance on the monitoring of patients with HPP during treatment with asfotase alfa, including recommendations for laboratory, efficacy, and safety assessments and the frequency with which these should be performed during the course of treatment. Recommended assessments are based on patient age and include regular monitoring of biochemistry, skeletal radiographs, respiratory function, growth, pain, mobility and motor function, and quality of life. Because of the systemic presentation of HPP, a coordinated, multidisciplinary, team-based, patient-focused approach is recommended in the management of patients receiving asfotase alfa. Monitoring of efficacy and safety outcomes must be tailored to the individual patient, depending on medical history, clinical manifestations, availability of resources in the clinical setting, and the clinician's professional judgment

    5-HT2C Receptors Localize to Dopamine and GABA Neurons in the Rat Mesoaccumbens Pathway

    Get PDF
    The serotonin 5-HT2C receptor (5-HT2CR) is localized to the limbic-corticostriatal circuit, which plays an integral role in mediating attention, motivation, cognition, and reward processes. The 5-HT2CR is linked to modulation of mesoaccumbens dopamine neurotransmission via an activation of γ-aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA). However, we recently demonstrated the expression of the 5-HT2CR within dopamine VTA neurons suggesting the possibility of a direct influence of the 5-HT2CR upon mesoaccumbens dopamine output. Here, we employed double-label fluorescence immunochemistry with the synthetic enzymes for dopamine (tyrosine hydroxylase; TH) and GABA (glutamic acid decarboxylase isoform 67; GAD-67) and retrograde tract tracing with FluoroGold (FG) to uncover whether dopamine and GABA VTA neurons that possess 5-HT2CR innervate the nucleus accumbens (NAc). The highest numbers of FG-labeled cells were detected in the middle versus rostral and caudal levels of the VTA, and included a subset of TH- and GAD-67 immunoreactive cells, of which >50% also contained 5-HT2CR immunoreactivity. Thus, we demonstrate for the first time that the 5-HT2CR colocalizes in DA and GABA VTA neurons which project to the NAc, describe in detail the distribution of NAc-projecting GABA VTA neurons, and identify the colocalization of TH and GAD-67 in the same NAc-projecting VTA neurons. These data suggest that the 5-HT2CR may exert direct influence upon both dopamine and GABA VTA output to the NAc. Further, the indication that a proportion of NAc-projecting VTA neurons synthesize and potentially release both dopamine and GABA adds intriguing complexity to the framework of the VTA and its postulated neuroanatomical roles

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels

    Interactions of the Melanocortin-4 Receptor with the Peptide Agonist NDP-MSH

    Get PDF
    Melanocortin-4 receptor (MC4R) has an important regulatory role in energy homeostasis and food intake. Peptide agonists of the MC4R are characterized by the conserved sequence His6-Phe7-Arg8-Trp9, which is crucial for their interaction with the receptor. This investigation utilized the covalent attachment approach to identify receptor residues in close proximity to the bound ligand [Nle4,d-Phe7]melanocyte-stimulating hormone (NDP-MSH), thereby differentiating between residues directly involved in ligand binding and those mutations that compromise ligand binding by inducing conformational changes in the receptor. Also, recent X-ray structures of G-protein-coupled receptors were utilized to refine a model of human MC4R in the active state (R⁎), which was used to generate a better understanding of the binding mode of the ligand NDP-MSH at the atomic level
    corecore