153 research outputs found

    Political Negotiations during the China War of 1860:: Transcultural Dimensions of Early Chinese and Western Diplomacy

    Get PDF
    Der China-Feldzug der britisch-französischen Truppen von 860 endete zwar mit einer Niederlage für China, leitete aber gleichzeitig eine neue Phase der diplomatischen Beziehungen zu den Westmächten ein. Die vorliegende Untersuchung der während des Krieges geführten politischen Verhandlungen zeigt, dass es zu Annäherungen kam, indem beide Seiten die diplomatischen Gepflogenheiten und Systeme des jeweils anderen zu erkennen trachteten und in einem transkulturellen Prozess in die Fortführung der Verhandlungen integrierten. Damit wird der traditionellen Deutung dieses Ereignisses als Meilenstein des europäischen Imperialismus eine neue Dimension hinzugefügt: Das chinesische System der Außenbeziehungen war wie das europäische sehr flexibel, und auch die „informal empires“ mussten stets neu verhandelt werden

    Predation thresholds for reintroduction of native avifauna following suppression of invasive Brown Treesnakes on Guam

    Get PDF
    The brown treesnake (BTS) (Boiga irregularis) invasion on Guåhan (in English, Guam) led to the extirpation of nearly all native forest birds. In recent years, methods have been developed to reduce BTS abundance on a landscape scale. To help assess the prospects for the successful reintroduction of native birds to Guåhan following BTS suppression, we modeled bird population persistence based on their life history characteristics and relative sensitivity to BTS predation. We constructed individual-based models and simulated BTS predation in hypothetical founding populations for each of seven candidate bird species. We represented BTS predation risk in two steps: risk of being encountered and risk of mortality if encountered. We link encounter risk from the bird’s perspective to snake contact rates at camera traps with live animal lures, the most direct practical means of estimating BTS predation risk. Our simulations support the well-documented fact that Guåhan’s birds cannot persist with an uncontrolled population of BTS but do indicate that bird persistence in Guåhan’s forests is possible with suppression short of total eradication. We estimate threshold BTS contact rates would need to be below 0.0002–0.0006 snake contacts per bird per night for these birds to persist on the landscape, which translates to an annual encounter probability of 0.07–0.20. We simulated the effects of snake-proof nest boxes for Sihek (Todiramphus cinnamominus) and Såli (Aplonis opaca), but the benefits were small relative to the overall variation in contact rate thresholds among species. This variation among focal bird species in sustainable predation levels can be used to prioritize species for reintroduction in a BTS-suppressed landscape, but variation among these species is narrow relative to the required reduction from current BTS levels, which may be four orders of magnitude higher (\u3e0.18). Our modeling indicates that the required predation thresholds may need to be lower than have yet been demonstrated with current BTS management. Our predation threshold metric provides an important management tool to help estimate target BTS suppression levels that can be used to determine when bird reintroduction campaigns might begin and serves as a model for other systems to match predator control with reintroduction efforts

    Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism

    Get PDF
    INTRODUCTION: Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. MATERIAL AND METHODS: Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p < 0.05 considered significant. RESULTS: Wild-type preadipocyte CM accelerated Pan02 and TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p < 0.01, respectively). Knockdown of preadipocyte HGF resulted in attenuated proliferation vs. wild type CM in Pan02 cells (35 ± 5% vs. 68 ± 14% greater than control; p < 0.05), but proliferation in TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p < 0.05). Inhibition of HGF receptor, c-met, resulted in attenuated proliferation versus control in Pan02 cells, but not TGP-47 cells. CONCLUSIONS: These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation

    Prevalence and Diversity of Avian Hematozoan Parasites in Asia: A Regional Study

    Get PDF
    Tissue samples from 699 birds from three regions of Asia (Myanmar, India, and South Korea) were screened for evidence of infection by avian parasites in the genera Plasmodium and Haemoproteus. Samples were collected from November 1994 to October 2004. We identified 241 infected birds (34.0%). Base-on-sequence data for the cytochrome b gene from 221 positive samples, 34 distinct lineages of Plasmodium, and 41 of Haemoproteus were detected. Parasite diversity was highest in Myanmar followed by India and South Korea. Parasite prevalence differed among regions but not among host families. There were four lineages of Plasmodium and one of Haemoproteus shared between Myanmar and India and only one lineage of Plasmodium shared between Myanmar and South Korea. No lineages were shared between India and South Korea, although an equal number of distinct lineages were recovered from each region. Migratory birds in South Korea and India originate from two different migratory flyways; therefore cross-transmission of parasite lineages may be less likely. India and Myanmar shared more host species and habitat types compared to South Korea. Comparison between low-elevation habitat in India and Myanmar showed a difference in prevalence of haematozoans

    Positive relationships between association strength and phenotypic similarity characterize the assembly of mixed-species bird flocks worldwide

    Get PDF
    Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly

    Grape Seed Proanthocyanidins Inhibit the Invasiveness of Human HNSCC Cells by Targeting EGFR and Reversing the Epithelial-To-Mesenchymal Transition

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is responsible for approximately 20,000 deaths per year in the United States. Most of the deaths are due to the metastases. To develop more effective strategies for the prevention of metastasis of HNSCC cells, we have determined the effect of grape seed proanthocyanidins (GSPs) on the invasive potential of HNSCC cell and the mechanisms underlying these effects using OSC19 cells as an in vitro model. Using cell invasion assays, we established that treatment of the OSC19 cells with GSPs resulted in a dose-dependent inhibition of cell invasion. EGFR is over-expressed in 90% of HNSCCs and the EGFR inhibitors, erlotinib and gefitinib, are being explored as therapies for this disease. We found that GSPs treatment reduced the levels of expression of EGFR in the OSC19 cells as well as reducing the activation of NF-κB/p65, a downstream target of EGFR, and the expression of NF-κB-responsive proteins. GSPs treatment also reduced the activity of ERK1/2, an upstream regulator of NF-κB and treatment of the cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, inhibited cell invasion. Overexpression of EGFR and high NF-κB activity play a key role in the epithelial-to-mesenchymal transition, which is of critical importance in the processes underlying metastasis, and we found treatment with GSPs enhanced the levels of epithelial (E-cadherin, cytokeratins and desmoglein-2) and reduced the levels of mesenchymal (vimentin, fibronectin, N-cadherin and Slug) biomarkers in the OSC19 cells. These results indicate that GSPs have the ability to inhibit HNSCC cell invasion, and do so by targeting the expression of EGFR and activation of NF-κB as well as inhibiting the epithelial-to-mesenchymal transition

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity– ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1. Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets
    corecore