476 research outputs found

    Digital analysis of wind tunnel imagery to measure fluid thickness

    Get PDF
    Documented here are the procedure and results obtained from the application of digital image processing techniques to the problem of measuring the thickness of a deicing fluid on a model airfoil during simulated takeoffs. The fluid contained a fluorescent dye and the images were recorded under flash illumination on photographic film. The films were digitized and analyzed on a personal computer to obtain maps of the fluid thickness

    Blur Identification Based on Higher Order Spectral Nulls

    Get PDF
    The identification of the point spread function (PSF) from the degraded image data constitutes an important first step in image restoration that is known as blur identification. Though a number of blur identification algorithms have been developed in recent years, two of the earlier methods based on the power spectrum and power cepstrum remain popular, because they are easy to implement and have proved to be effective in practical situations. Both methods are limited to PSF\u27s which exhibit spectral nulls, such as due to defocused lens and linear motion blur. Another limitation of these methods is the degradation of their performance in the presence of observation noise. The central slice of the power bispectrum has been employed as an alternative to the power spectrum which can suppress the effects of additive Gaussian noise. In this paper, we utilize the bicepstrum for the identification of linear motion and defocus blurs. We present simulation results where the performance of the blur identification methods based on the spectrum, the cepstrum, the bispectrum and the bicepstrum is compared for different blur sizes and signal-to-noise ratio levels

    Spectral Imaging Methods Applied to the Syriac Galen Palimpsest

    Get PDF
    The spectral imaging techniques applied to the so-called “Syriac Galen palimpsest” in 2008-2010 are reported, including examples of results obtained. The imaging methods were adapted from those used on the Archimedes palimpsest during prior years, and are now comparatively elementary relative to methods that have been developed since. These recent advances will be outlined to demonstrate why improvements would be expected in newer imaging collections and processing

    The genetic interplay between body mass index, breast size and breast cancer risk: a Mendelian randomization analysis.

    Get PDF
    BACKGROUND: Evidence linking breast size to breast cancer risk has been inconsistent, and its interpretation is often hampered by confounding factors such as body mass index (BMI). Here, we used linkage disequilibrium score regression and two-sample Mendelian randomization (MR) to examine the genetic associations between BMI, breast size and breast cancer risk. METHODS: Summary-level genotype data from 23andMe, Inc (breast size, n = 33 790), the Breast Cancer Association Consortium (breast cancer risk, n = 228 951) and the Genetic Investigation of ANthropometric Traits (BMI, n = 183 507) were used for our analyses. In assessing causal relationships, four complementary MR techniques [inverse variance weighted (IVW), weighted median, weighted mode and MR-Egger regression] were used to test the robustness of the results. RESULTS: The genetic correlation (rg) estimated between BMI and breast size was high (rg = 0.50, P = 3.89x10-43). All MR methods provided consistent evidence that higher genetically predicted BMI was associated with larger breast size [odds ratio (ORIVW): 2.06 (1.80-2.35), P = 1.38x10-26] and lower overall breast cancer risk [ORIVW: 0.81 (0.74-0.89), P = 9.44x10-6]. No evidence of a relationship between genetically predicted breast size and breast cancer risk was found except when using the weighted median and weighted mode methods, and only with oestrogen receptor (ER)-negative risk. There was no evidence of reverse causality in any of the analyses conducted (P > 0.050). CONCLUSION: Our findings indicate a potential positive causal association between BMI and breast size and a potential negative causal association between BMI and breast cancer risk. We found no clear evidence for a direct relationship between breast size and breast cancer risk

    Evaluation of associations between genetically predicted circulating protein biomarkers and breast cancer risk.

    Get PDF
    A small number of circulating proteins have been reported to be associated with breast cancer risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for breast cancer via the integration of genomics and proteomics data. In the Breast Cancer Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) for each protein using the inverse-variance weighted method. We identified 56 proteins significantly associated with breast cancer risk by instrumental analysis (false discovery rate <0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like growth factor receptor 1 and other membrane receptors (OR: 0.82-1.18, p values: 6.96 × 10-4 -3.28 × 10-8 ), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins identified at other loci include those involved in biological processes such as alcohol and lipid metabolism, proteolysis, apoptosis, immune regulation and cell motility and proliferation. Consistent associations were observed for 22 proteins in the UK Biobank data (p < 0.05). The study identifies potential novel biomarkers for breast cancer, but further investigation is needed to replicate our findings.Includes CRUK and FP7

    A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density.

    Get PDF
    INTRODUCTION: Mammographic density is an established breast cancer risk factor with a strong genetic component and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic variants that may modify the association between MHT use and mammographic density. METHODS: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide polymorphisms (SNPs) showing the lowest P-values for interaction (P int) in a meta-analysis of genome-wide gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes (AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate interactions between SNPs and current use of MHT on mammographic density. RESULTS: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT interaction (unadjusted P int <0.0004) was observed with rs9358531 6.5kb 5' of PRL. Furthermore, three SNPs in PLCG2 that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify also the association of MHT use with mammographic density (unadjusted P int <0.002), but solely among cases (unadjusted P int SNP×MHT×case-status <0.02). CONCLUSIONS: The study identified potential interactions on mammographic density between current use of MHT and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed, larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-015-0625-

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers

    Get PDF
    Purpose To determine whether adjuvant tamoxifen treatment for breast cancer (BC) is associated with reduced contralateral breast cancer (CBC) risk for BRCA1 and/or BRCA2 mutation carriers. Methods Analysis of pooled observational cohort data, self-reported at enrollment and at follow-up from the International BRCA1, and BRCA2 Carrier Cohort Study, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, and Breast Cancer Family Registry. Eligible women were BRCA1 and BRCA2 mutation carriers diagnosed with unilateral BC since 1970 and no other invasive cancer or tamoxifen use before first BC. Hazard ratios (HRs) for CBC associated with tamoxifen use were estimated using Cox regression, adjusting for year and age of diagnosis, country, and bilateral oophorectomy and censoring at contralateral mastectomy, death, or loss to follow-up. Results Of 1,583 BRCA1 and 881 BRCA2 mutation carriers, 383 (24%) and 454 (52%), respectively, took tamoxifen after first BC d
    • 

    corecore