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Abstract

Introduction: Mammographic density is an established breast cancer risk factor with a strong genetic component
and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic
variants that may modify the association between MHT use and mammographic density.

Methods: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and
nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide
polymorphisms (SNPs) showing the lowest P-values for interaction (Pint) in a meta-analysis of genome-wide
gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes
(AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692,
PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556,
12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in
genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate
interactions between SNPs and current use of MHT on mammographic density.

Results: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT
interaction (unadjusted Pint <0.0004) was observed with rs9358531 6.5kb 5′ of PRL. Furthermore, three SNPs in PLCG2
that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify
also the association of MHT use with mammographic density (unadjusted Pint <0.002), but solely among cases
(unadjusted Pint SNP×MHT×case-status <0.02).

Conclusions: The study identified potential interactions on mammographic density between current use of MHT
and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed,
larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.
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Introduction
High mammographic density for a woman’s age and
body mass index (BMI) - meaning large radio-dense
fibro-glandular areas that appear white or bright on a
mammogram - is considered an established risk factor
for breast cancer. The association with mammographic
density seems to be present for risk of both estrogen re-
ceptor negative and estrogen receptor positive breast
cancer [1, 2]. Mammographic density changes over life-
time and generally declines with age [3]. The decline of
mammographic density with age may seem paradoxical
for a risk factor, as breast cancer risk generally increases
with age. This contradiction may be resolved when re-
garding mammographic density as a risk factor cumulat-
ing over time [4, 5]. Heritable factors have been
estimated to explain up to 63 % of variation in mammo-
graphic density, implicating a strong genetic component
[6, 7]. Also, recent evidence suggests that the biological
attributes leading to greater mammographic density and
development of breast cancer have common predispos-
ing genes [8–11].
The use of tamoxifen is associated with a decrease in

mammographic density [12–14], whereas the use of
menopausal hormone therapy (MHT) is associated with
higher mammographic density [15–17]. To date, the bio-
logical mechanisms by which MHT use influences mam-
mographic density are largely unknown [18]. On the
other hand, it is established that the use of MHT is asso-
ciated with increased breast cancer risk and that the
health risks of extended MHT use may exceed the bene-
fits [19]. However, approximately 5 % of women aged
40 years or older reported current use of oral MHT in
the US National Health and Nutrition Examination
Survey in 2009–2010 [20]. In Europe, similar propor-
tions of women aged 45–69 years were reported to cur-
rently use MHT in 2010 according to estimations based
on sales data [21].
To better understand the relationship between MHT

use and mammographic density, several studies investi-
gated whether polymorphisms in candidate genes related
to hormone metabolism, nuclear hormone receptors and
growth factors are associated with mammographic dens-
ity and whether these polymorphisms show a statistical
interaction with MHT use, i.e., modify the association
between MHT and mammographic density [22–28].
Most studies did not identify any significant interaction,
but the null findings can also be attributed to the gener-
ally small sample sizes. Two studies observed potential
gene-environment interactions between MHT use and
single nucleotide polymorphisms (SNPs) in AKR1C4,
CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-
SULT1A2 and TNF, which warrant confirmation by further
studies [24, 28]. We therefore conducted a comprehensive
replication analysis in the largest study available to date
using genotypes and imputed genotypes of SNPs located in
or near these genes.
Candidate gene association studies might have missed

gene-environment interactions with genes not selected
for study. We previously conducted a meta-analysis of
four case-only genome-wide gene-environment inter-
action studies to identify genetic variants that modify
the association of MHT use with breast cancer risk [29].
We hypothesized that these common variants may also
modify the association between MHT use and mammo-
graphic density. Therefore, we selected the most signifi-
cant SNPs from the genome-wide G×MHT interaction
studies of breast cancer risk for assessment of inter-
action with MHT use on mammographic density.
Furthermore, we included ten variants associated with
age-adjusted and BMI-adjusted percent density, dense
area or non-dense area at the genome-wide significance
level (ZNF365-rs10995190 [30], 12q24-rs1265507 [31], and
AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607,
8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556,
TMEM184B-rs7289126, and SGSM3-rs17001868 [10]).

Materials and methods
Study sample
The analysis was carried out on pooled data from a
nested case–control study of the Mayo mammography
health study (MMHS), and from five case–control stud-
ies (Australian breast cancer family study (ABCFS),
Bavarian breast cancer cases and controls (BBCC), Mayo
clinic breast cancer study (MCBCS), Ontario familial
breast cancer registry (OFBCR), and the Singapore and
Sweden breast cancer study (SASBAC)), two nested
case–control studies (Melbourne collaborative cohort
study (MCCS) and the Multi-ethnic cohort (MEC)), one
cohort study (European prospective investigation into
cancer and nutrition (EPIC)) and one family study
(Sisters in breast screening study (SIBS)), participating in
the Breast Cancer Association Consortium (BCAC) [32];
EPIC and SIBS samples are part of SEARCH [33] within
BCAC). Details on study design and recruitment are
provided in Additional file 1: Table S1. All participants
signed informed consent and the studies were approved
by the relevant ethics committees. The names of the in-
dividual approving ethics committees for each study can
be found within the Acknowledgements section.
Participants were eligible for this study if information

on mammographic density, relevant covariates and SNP
genotypes was available and if they were of European
descent and postmenopausal at the time of mammog-
raphy. Ancestry informative principal components were
used to define probable ethnic ancestry, with the excep-
tion of MMHS, where ethnicity was self-reported or ab-
stracted from clinical records. In total, 6,298 individuals
were included in the analysis.
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Density measures and exposure definitions
Each study collected radiographs of mammograms from
participants, either in the mediolateral oblique or cranio-
caudal view. The radiographs were digitized and percent
density, dense area, and non-dense area measures were
obtained using one of two similar semi-automated
methods, Cumulus [34] and Madena [35]. Measurements
using the two methods have been found to be highly cor-
related (Pearson correlation coefficient of 0.86) [36].
Information on relevant exposures such as age, MHT

use and BMI was collected individually by each study.
The date of the mammogram was the reference date
used for all exposure definitions. Ever use of MHT was
defined as use of any type of MHT. Women were cate-
gorized as current users when using MHT at the date of
mammography, former users if they had used MHT pre-
viously and never users if they had never used MHT. As
part of the DENSNP project [9], individual study data
were centrally quality checked and harmonized at the
Mayo Clinic, Rochester, Minnesota.

SNP selection, genotyping and imputation
Using a meta-analysis of four case-only genome-wide
gene-environment interaction studies on the association
between MHT use, and overall and lobular breast cancer
risk [29], 5,000 SNPs were initially selected based on evi-
dence of interaction with MHT. For each SNP, the lower
P value for interaction (Pint) from the results for overall
and lobular breast cancer was used. After exclusion of
SNPs with minor allele frequency (MAF) <0.05, P <0.05
for Cochran’s Q or I2 ≥30% for study heterogeneity and
the availability of the respective SNP data in fewer than
two case-only studies, 4,421 SNPs remained. Of these,
the 1,391 SNPs showing Pint <0.003 were selected for in-
clusion in a custom Illumina iSelect genotyping array
(iCOGS). The iCOGS data were centrally quality con-
trolled after genotyping, which led to the exclusion of 56
SNPs. SNP exclusion criteria were a call rate of <95 %,
monomorphism, deviation from Hardy-Weinberg equi-
librium with P <1.0 × 10−7 and concordance in duplicate
samples <98% [37]. We additionally excluded seven
SNPs with MAF <0.05 in our dataset.
We additionally identified 5,457 SNPs located in or

50 kb around AKR1C4, CYP1A1-CYP1A2, CYP1B1,
ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF for
replication analysis, which were available through
iCOGS genotyping and imputation. Of these, 2,541 SNPs
were available in BCAC studies and MMHS. For
MMHS, the 1000 Genomes Phase I version 3 March
2012 release of the reference panel was used for imput-
ation. Imputation was done using SHAPEIT [38] and
IMPUTE.V2 [39]. Imputed SNPs were excluded if the
imputation accuracy r2 was <0.3. For BCAC studies, im-
putation was conducted centrally in Cambridge, using
the same methods and reference panel that were used
for MMHS. Imputed SNPs with MAF <0.05 or imput-
ation accuracy r2 <0.3 were excluded from analysis.
In total, we analyzed 1,327 genotyped SNPs selected

based on the genome-wide interaction studies, plus 121
genotyped SNPs and 2,420 imputed SNPs located in
or near AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2,
PPARG, PRL, SULT1A1-SULT1A2 and TNF, for replication
analysis. In addition, genotypes of AREG-rs10034692,
PRDM6-rs186749 (imputed), ESR1-rs12665607, ZNF365-
rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-
rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and
SGSM3-rs17001868 were analyzed.

Statistical analysis
The mammographic density variables were square-root-
transformed to meet the model assumption of normality
of the error distribution. Associations between SNPs and
mammographic density measures (first, percent density
and second, dense area and non-dense area) were
assessed using multiple linear regression models (PROC
MIXED, SAS 9.2). All models were adjusted for study,
age (continuous), case status (breast cancer case/non-
case), BMI (continuous), former MHT use (yes/no),
number of pregnancies (continuous) and 15 ancestry in-
formative principal components (continuous) that had
been constructed previously [40]. For MMHS, the prin-
cipal components were not available and have been set
to 0. SNP genotypes were coded according to an additive
model (0, 1, 2 alleles) and entered as a continuous vari-
able. For imputed SNPs, the estimated allele dosage was
entered (values between 0 and 2). To evaluate interac-
tions between SNPs and current MHT use on mammo-
graphic density measures, we included a respective
interaction term in the models. All statistical tests were
two-sided. To account for the number of tests per-
formed, we calculated adjusted P values according to a
false discovery rate (FDR) of 10 %, applying the method
described by Benjamini and Hochberg [41]. We report
estimates from analyses pooling individual study data,
and assessed between-study heterogeneity by calculating
Cochrane’s Q and I2 based on the per-study estimates,
using the package meta, version 2.1-2 within the R soft-
ware, version 2.15.2.
For illustration, the association between current use of

MHT and mammographic density measures stratified by
SNP genotypes was calculated. For imputed SNPs, allele
dosages <0.5 of the coding allele were translated into an
imputed homozygous reference genotype. Likewise, allele
dosages ≥0.5 and <1.5 were translated into an imputed
heterozygous genotype and allele dosages ≥1.5 into an
imputed homozygous non-reference genotype.
Because SNPs selected for this study were previ-

ously found to have a potential multiplicative statistical



Rudolph et al. Breast Cancer Research  (2015) 17:110 Page 4 of 12
interaction with use of MHT on breast cancer risk, we
evaluated whether interactions on mammographic dens-
ity differed for cases and non-cases by entering a three-
way interaction term (SNP × MHT × case status) into
multiple regression models.
Potential functional implications of selected SNPs

were assessed using HaploReg v2 [42] and the University
of California Santa Cruz (UCSC) genome browser [43].
Linkage disequilibrium (LD) between SNPs of interest
was assessed using LD information from the 1000
Genomes Project within HaploReg v2.

Results
The characteristics of the study population according to
mammographic density measurements are described in
Table 1. The adjusted mean percent mammographic
Table 1 Mammographic density measurements by known breast ca
time of mammography

Characteristic Number (%) PD, mean (95 % CI)a,b Dens

Total 6,298 (100.0) 18.1 28.5

Age, years

<50 190 (3.0) 25.9 (23.8, 28.0) 32.9 (

≥50 to <60 1,948 (30.9) 21.3 (20.4, 22.2) 30.8 (

≥60 to <70 2,939 (46.7) 17.6 (16.8, 18.4) 27.0 (

≥70 to <80 1,101 (17.5) 16.7 (15.7, 17.7) 25.8 (

≥80 120 (1.9) 14.3 (12.3, 16.4) 22.1 (

BMI, kg/m2

<25 2,488 (39.5) 25.0 (24.0, 25.9) 30.0 (

≥25 to <30 2,244 (35.6) 17.6 (16.8, 18.4) 27.9 (

≥30 to <35 1,088 (17.3) 13.3 (12.4, 14.1) 25.5 (

≥35 478 (7.6) 10.2 (9.3, 11.2) 23.0 (

MHT use

never 2,885 (45.8) 16.2 (15.6, 16.9) 23.7 (

former 2,100 (33.3) 17.5 (16.8, 18.3) 26.0 (

current 1,313 (20.9) 19.9 (19.0, 20.8) 29.7 (

Parity

nulliparous 775 (12.3) 22.3 (21.1, 23.5) 32.7 (

1 full-term pregnancy 848 (13.5) 20.2 (19.1, 21.3) 31.0 (

2 full-term pregnancies 2,369 (37.6) 18.3 (17.5, 19.1) 27.5 (

≥3 full-term pregnancies 2,306 (36.6) 17.2 (16.5, 18.0) 25.3 (

Mammographic viewc

MLO 3,454 (54.8) 14.6 (14.1, 15.1) 23.3 (

CC 2,844 (45.2) 19.0 (18.5, 19.5) 29.0 (

Case status

non-case 4,054 (64.4) 17.0 (16.2, 17.8) 25.7 (

case 2,244 (35.6) 20.4 (19.6, 21.3) 30.0 (
aBack-transformed. bAdjusted for study, reference age, use of menopausal hormone
study mammographs were taken in either the mediolateral oblique (MLO) or cranio
density was higher in younger women, in women with a
lower BMI, and in nulliparous women compared to
women with one or more pregnancies. Women currently
using MHT compared to never users or former users
had a higher adjusted mean percent density as did
women diagnosed with breast cancer compared to non-
cases. Additional file 2: Table S2 shows the characteris-
tics by study.
The beta value from fixed effect meta-analysis of the

association between current use of MHT and square-
root-transformed percent density was 0.43 (95 % CI
0.34, 0.53). There was some indication of between-study
heterogeneity (P value for heterogeneity = 0.12, I2= 35.4 %),
which was attributable to one study (OFBCR). The beta
value for current use of MHT was very similar when
analyzing solely cases (beta = 0.42, 95 % CI 0.26, 0.58)
ncer risk factors, mammographic projection, and case status at

e area, cm2, mean (95 % CI)a,b Non-dense area, cm2, mean (95 % CI)a,b

143.1

29.8, 36.1) 98.4 (92.4, 104.5)

29.4, 32.3) 114.9 (111.8, 118.0)

25.7, 28.3) 127.9 (124.7, 131.0)

24.2, 27.5) 131.9 (128.0, 136.0)

18.9, 25.5) 135.8 (126.9, 145.0)

28.7, 31.4) 85.9 (83.3, 88.5)

26.6, 29.3) 129.0 (125.7, 132.4)

24.0, 27.1) 170.0 (165.5, 174.6)

21.1, 24.9) 211.3 (204.7, 217.9)

22.7, 24.8) 128.3 (125.6, 131.1)

24.8, 27.3) 125.7 (122.8, 128.7)

28.2, 31.2) 121.5 (118.2, 124.9)

30.9, 34.6) 117.5 (113.6, 121.4)

29.2, 32.9) 124.0 (120.0, 128.0)

26.2, 28.9) 126.2 (123.1, 129.4)

24.0, 26.6) 123.2 (120.2, 126.3)

22.4, 24.2) 139.3 (137.1, 141.6)

28.1, 30.0) 122.6 (120.7, 124.6)

24.5, 27.0) 128.4 (125.3, 131.6)

28.7, 31.4) 118.9 (116.0, 121.8)

therapy (MHT), body mass index (BMI) and number of pregnancies. cIn each
caudal (CC) projection. PD percent density
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or non-cases (beta = 0.42, 95 % CI 0.30, 0.54). The for-
est plots for the whole study sample, non-cases and
cases, respectively are displayed in Fig. 1.
We did not identify significant associations between

the analyzed SNPs and percent density (all FDR adjusted
P values >0.1). The top ten SNPs associated with percent
Fig. 1 Meta-analyses of study estimates for association of current
use of menopausal hormone therapy with square-root-transformed
percent mammographic density analyzing all study subjects (a),
non-cases (b) and cases (c). ABCFS Australian breast cancer family
study, BBCC Bavarian breast cancer cases and controls, EPIC European
prospective investigation into cancer and nutrition, MCBS Mayo clinic
breast cancer study, MCCS Melbourne collaborative cohort study,
MEC Multi-ethnic cohort, MMHS Mayo mammography health study,
OFBCR Ontario familial breast cancer registry, SASBAC Singapore and
Sweden breast cancer study, SIBS Sisters in breast screening study
density are shown in Table 2. The association with per-
cent density with the lowest P value was observed for
rs181042206 on chromosome 15 (5.2kb 3′ of CYP1A1,
beta = −0.10, 95 % CI −0.16, −0.04, P = 0.0006).
The association was not heterogeneous between stud-
ies (P value for heterogeneity = 0.32, I2 = 13.6 %). For
the components of percent density, rs181042206 was
more strongly associated with non-dense area (beta =
0.14, 95 % CI 0.05, 0.23, P = 0.002) than dense area
(beta = −0.10, 95 % CI −0.18, −0.02, P = 0.01).
There was no significant interaction between current

use of MHT and the SNPs after correcting for multiple
testing (all adjusted Pint >0.1). The ten SNPs showing
the lowest Pint on percent mammographic density are
displayed in detail in Additional file 3: Table S3. Results
for all investigated SNPs can be found in Additional
file 4: Tables S6a to S6c. Table 3 shows associations be-
tween current MHT use and mammographic density
stratified by these SNPs. The imputed variant rs9358531
on chromosome 6 (6.5kb 5′ of PRL) had the strongest
interaction (Pint = 0.0004). Current use of MHT was as-
sociated with percent mammographic density in women
with imputed G/G genotype of rs9358531 with beta =
0.69, 95 % CI 0.49, 0.89, P = 1.4 × 10−11. The association
was less strong in women with imputed T/T genotype
(beta = 0.23, 95 % CI 0.08, 0.38, P = 2.5 × 10−03). We
did not observe study heterogeneity for this interaction
(P value for heterogeneity = 0.75, I2 = 0 %). The inter-
action between rs9358531 and current use of MHT on
percent density was also similar in cases and non-cases
(in cases: betaint = 0.28, 95 % CI 0.06, 0.51, Pint = 0.01; in
non-cases: betaint = 0.21, 95 % CI 0.05, 0.37, Pint = 0.01;
Pint SNP × MHT × case status = 0.60). Six SNPs
among the ten SNPs showing the lowest Pint are in
LD with rs9358531 (rs9356811, rs10946546, rs9393273,
rs12525289, rs12199382, rs12524161) with r2 ranging from
0.50 to 0.80. A genotyped SNP (rs1935007) in moderate
LD with rs9356811 (r2 = 0.42) had a similar but weaker
interaction (betaint = 0.20, 95 % CI 0.07, 0.32, Pint = 0.002)
compared to the imputed SNPs in the region. Furthermore,
we observed a potential interaction between MHT and a
genotyped SNP on chromosome 13 (rs9542456, 505 kb 3′
of ATXN8OS). In women carrying the G/G genotype,
current use of MHT was associated with percent mam-
mographic density (beta = 0.59, 95 % CI 0.46, 0.73,
P = 4.7 × 10−18). This association was attenuated in women
carrying the A/A genotype (beta = 0.22, 95 % CI −0.01,
0.45, P = 0.06, Pint = 0.0009). Also two variants in
the proximity of CYP1A1 (rs17861099, rs17861118)
had potential interactions, with Pint = 0.001. Both
variants are in high LD with each other (r2 = 0.83),
but not with the variant rs181042206 identified in
the association analysis for percent mammographic
density (r2 <0.20).



Table 2 Ten SNPs with the lowest P values for association with percent mammographic density

SNP SNP type Chr Gene, RefSeq Feature Percent densitya Dense area, cm2a Non-dense area, cm2a

Betab (95 % CI) P Padj
c Betab (95 % CI) P Betab (95 % CI) P

rs181042206 Imputed 15 5.2kb 3′ of CYP1A1 −0.10 (−0.16, −0.04) 0.0006 2.51 −0.10 (−0.18, −0.02) 0.01 0.14 (0.05, 0.23) 0.002

rs12258125 Genotyped 10 272kb 5′ of ANKRD30A 0.09 (0.04, 0.14) 0.0008 1.53 0.10 (0.03, 0.17) 0.004 −0.07 (−0.14, 0.00) 0.07

rs11616761 Genotyped 13 CDC16 Intronic 0.14 (0.05, 0.23) 0.0022 2.83 0.18 (0.06, 0.29) 0.004 −0.11 (−0.24, 0.02) 0.09

rs4632572 Genotyped 3 254kb 5′ of ALCAM 0.08 (0.03, 0.14) 0.0027 2.59 0.14 (0.07, 0.21) 0.0002 0.00 (−0.08, 0.08) 0.96

rs11896627 Genotyped 2 241kb 5′ of NCKAP5 −0.08 (−0.13, −0.03) 0.0032 2.49 −0.10 (−0.17, −0.03) 0.003 0.03 (−0.05, 0.10) 0.51

rs2446585 Genotyped 10 FRMD4A Intronic −0.07 (−0.12, −0.02) 0.0038 2.46 −0.08 (−0.15, −0.02) 0.01 0.07 (−0.01, 0.14) 0.07

rs273352 Genotyped 18 MAPRE2 Intronic −0.08 (−0.13, −0.02) 0.0058 3.22 −0.08 (−0.15, −0.01) 0.04 0.10 (0.02, 0.18) 0.01

rs477705 Genotyped 18 MAPRE2 Intronic −0.08 (−0.13, −0.02) 0.0058 2.82 −0.08 (−0.15, −0.01) 0.03 0.10 (0.02, 0.18) 0.01

rs10776775 Genotyped 1 LOC100287722 Intronic −0.07 (−0.12, −0.02) 0.0062 2.64 −0.09 (−0.15, −0.02) 0.009 0.01 (−0.06, 0.08) 0.78

rs2057469 Genotyped 9 RAB14 3′-UTR −0.07 (−0.12, −0.02) 0.0066 2.55 −0.08 (−0.15, −0.01) 0.02 0.08 (0.00, 0.16) 0.04
aSquare-root-transformed. bAdjusted for study, reference age, case status, current use of menopausal hormone therapy (MHT), former use of MHT, body mass
index, number of pregnancies and principal components. cAdjusted P value, calculated by multiplying P value by number of tests (here n = 3,868) and dividing by
assigned rank. SNP single nucleotide polymorphism, Chr chromosome, UTR untranslated region
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The ten SNPs showing the lowest Pint for percent
mammographic density in this study did not overlap
with the 14 SNPs recently identified to be potential
modifiers of overall/lobular breast cancer risk associated
with MHT use [29]. These 14 previously identified SNPs
also did not show clear evidence of interaction with
current use of MHT on percent mammographic density
when analyzing the whole study sample (Additional
file 5: Table S4). However, when testing for three-
way interactions between SNP, current MHT use and
case status, three SNPs in introns of PLCG2 on
chromosome 16 (rs7192724, rs4888190, rs17202296)
had differential interaction effects for cases and non-
cases (Pint SNP × MHT × case status = 0.005, 0.007,
and 0.019, respectively, Additional file 6: Table S5).
Potential interactions with current use of MHT on percent
density were observed solely for cases (Pint = 0.001, 0.0004,
0.001, respectively), but not in non-cases (Pint = 0.57, 0.86,
0.81, respectively).
In our study sample, the ten variants known from

genome-wide association studies (GWASs) were associ-
ated with percent mammographic density, dense area or
non-dense area as expected, also due to overlap between
the discovery samples and the studies included in this
work (Additional file 7: Table S7). None of them
showed a significant interaction with current use of
MHT on percent mammographic density (Additional
file 8: Table S8).

Discussion
We assessed whether 3,878 SNPs selected based on a
meta-analysis of four genome-wide case-only gene-
environment interaction studies, candidate gene studies
and GWAS of percent mammographic density are
differentially associated with mammographic density
according to current use of MHT. After accounting
for multiple testing, there were no significant interac-
tions for mammographic density between the investi-
gated SNPs and current use of MHT. However, three
SNPs in PLCG2 showing potential interaction with
MHT use for overall breast cancer risk in our previ-
ous study also showed potential interactions with
MHT use for mammographic density in this study,
but solely among cases. Thus, the results of this
study may indicate a potential common pathway be-
tween the biological mechanisms underlying higher
mammographic density and increased risk of breast
cancer associated with MHT use.
The variants rs7192724, rs17202296, and rs4888190

are located within PLCG2, although in two different in-
tronic regions. All three SNPs are located within 6 kb
and are in relatively strong LD (D’ >0.85, R2 >0.71). As
none of them are in LD with a coding variant, the effect
of the causal SNP may be exerted through a regulatory
mechanism. Using HaploReg and the UCSC genome
browser, we identified rs12448089 in strong LD with
rs4888190 (D’ = 0.98, R2 = 0.87) as a potential functional
variant. SNP rs12448089 is located in a DNase I hyper-
sensitive site and binding motifs of several transcription
factors (Additional file 9: Figure S1). Genotypes for
rs12448089 were not available in this study.
PLCG2 encodes phospholipase C-gamma 2, an enzyme

involved in the transmission of activation signals across
the cell membranes predominantly of B cells [44] as well
as natural killer cells [45]. PLCG2 plays an important
role in immune response regulation [46] and aberrant
functioning of PLCG2 due to exon deletions [47] or a
missense mutation [46] causes autoimmunity diseases.
With regard to breast cancer, PLCG2 has been identified
as an irradiation-responsive gene and a potential



Table 3 Association between mammographic density and current use of menopausal hormone therapy stratified by genotypes o n SNPs showing the lowest P values
for interaction

SNP SNP type Chr Gene Density
measure

Homozygous reference genotype (N) Heterozygous genotype (N) Hom ygous non-reference genotype (N) P interaction

Betaa (95 % CI) P Betaa (95 % CI) P Bet 95 % CI) P

T/T (2000) T/G (3167) G/G 131)

rs9358531 Imputed 6 6.5 kb 5′ of PRL PD 0.23 (0.08, 0.38) 2.5 × 10−03 0.46 (0.34, 0.58) 5.1 × 10−14 0.69 .49, 0.89) 1.4 × 10−11 0.0004

DA 0.38 (0.18, 0.58) 2.1 × 10−04 0.6 (0.44, 0.76) 1.2 × 10−13 0.85 .59, 1.12) 2.7 × 10−10 0.008

NDA −0.17 (−0.39, 0.05) 1.4 × 10−01 −0.29 (−0.47, −0.12) 1.2 × 10−03 −0. −0.87, −0.29) 1.0 × 10−04 0.02

G/G (2138) G/A (3142) A/A 18)

rs9356811 Imputed 6 5.2 kb 5′ of PRL PD 0.24 (0.1, 0.39) 1.1 × 10−03 0.48 (0.36, 0.6) 1.3 × 10−14 0.69 .48, 0.9) 1.5 × 10−10 0.0004

DA 0.39 (0.2, 0.59) 6.6 × 10−05 0.6 (0.44, 0.76) 1.9 × 10−13 0.89 .61, 1.17) 4.6 × 10−10 0.005

NDA −0.17 (−0.38, 0.05) 1.2 × 10−01 −0.33 (−0.51, −0.15) 2.5 × 10−04 −0. −0.82, −0.2) 1.1 × 10−03 0.05

C/C (2158) C/T (3124) T/T 16)

rs10946546 Imputed 6 17 kb 5′ of PRL PD 0.22 (0.07, 0.37) 3.2 × 10−03 0.51 (0.39, 0.63) 2.2 × 10−16 0.63 .42, 0.84) 3.0 × 10−09 0.0004

DA 0.39 (0.19, 0.58) 9.0 × 10−05 0.64 (0.48, 0.8) 4.8 × 10−15 0.77 .49, 1.05) 4.9 × 10−08 0.02

NDA −0.11 (−0.32, 0.1) 3.1 × 10−01 −0.37 (−0.55, −0.2) 3.4 × 10−05 −0. −0.8, −0.19) 1.5 × 10−03 0.01

T/T (2230) T/C (3093) C/C 5)

rs9393273 Imputed 6 8.1 kb 5′ of PRL PD 0.24 (0.1, 0.39) 7.8 × 10−04 0.49 (0.37, 0.61) 4.8 × 10−15 0.68 .47, 0.89) 5.0 × 10−10 0.0005

DA 0.4 (0.21, 0.59) 3.6 × 10−05 0.62 (0.46, 0.78) 8.5 × 10−14 0.86 .58, 1.15) 2.4 × 10−09 0.01

NDA −0.16 (−0.37, 0.05) 1.3 × 10−01 −0.33 (−0.51, −0.16) 2.4 × 10−04 −0. −0.85, −0.23) 6.9 × 10−04 0.03

A/A (2079) A/G (3154) G/G 065)

rs12525289 Imputed 6 9.9 kb 5′ of PRL PD 0.24 (0.09, 0.39) 1.5 × 10−03 0.47 (0.35, 0.59) 2.0 × 10−14 0.68 .47, 0.88) 7.8 × 10−11 0.0005

DA 0.4 (0.2, 0.59) 7.3 × 10−05 0.59 (0.43, 0.76) 4.3 × 10−13 0.88 .61, 1.15) 2.1 × 10−10 0.009

NDA −0.14 (−0.35, 0.08) 2.1 × 10−01 −0.34 (−0.51, −0.16) 1.9 × 10−04 −0. −0.82, −0.23) 5.4 × 10−04 0.03

G/G (2090) G/A (3142) A/A 66)

rs12199382 Imputed 6 24 kb 5′ of PRL PD 0.21 (0.07, 0.36) 4.5 × 10−03 0.51 (0.39, 0.63) 1.8 × 10−16 0.62 .41, 0.82) 2.8 × 10−09 0.0006

DA 0.37 (0.17, 0.56) 2.5 × 10−04 0.65 (0.49, 0.81) 1.7 × 10−15 0.76 .49, 1.03) 3.5 × 10−08 0.02

NDA −0.13 (−0.35, 0.08) 2.2 × 10−01 −0.35 (−0.53, −0.17) 1.1 × 10−04 −0. −0.79, −0.2) 1.1 × 10−03 0.02

G/G (2629) G/A (2873) A/A 6)

rs9542456 Genotyped 13 505 kb 3′ of ATXN8OS PD 0.59 (0.46, 0.73) 4.7 × 10−18 0.33 (0.2, 0.45) 4.1 × 10−07 0.22 0.01, 0.45) 5.9 × 10−02 0.0009

DA 0.75 (0.57, 0.93) 2.0 × 10−16 0.45 (0.28, 0.61) 1.8 × 10−07 0.44 .14, 0.75) 4.7 × 10−03 0.02

NDA −0.43 (−0.63, −0.24) 1.6 × 10−05 −0.27 (−0.45, −0.08) 4.7 × 10−03 0.02 0.32, 0.36) 9.2 × 10−01 0.02
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Table 3 Association between mammographic density and current use of menopausal hormone therapy stratified by genotypes of ten SNPs showing the lowest P values
for interaction (Continued)

T/T (2241) T/G (3092) G/G (965)

rs12524161 Imputed 6 46 kb 5′ of PRL PD 0.26 (0.12, 0.41) 2.8 × 10−04 0.47 (0.35, 0.6) 3.9 × 10−14 0.68 (0.47, 0.89) 4.6 × 10−10 0.001

DA 0.42 (0.23, 0.61) 1.2 × 10−05 0.6 (0.44, 0.76) 4.8 × 10−13 0.86 (0.58, 1.14) 2.6 × 10−09 0.01

NDA −0.14 (−0.35, 0.06) 1.7 × 10−01 −0.34 (−0.51, −0.16) 2.3 × 10−04 −0.57 (−0.88, −0.26) 3.3 × 10−04 0.02

C/C (5358) C/T (899) T/T (41)

rs17861099 Imputed 15 462 bp 5′ of CYP1A1 PD 0.48 (0.39, 0.58) 2.4 × 10−21 0.09 (−0.14, 0.32) 4.3 × 10−01 −0.22 (−1.8, 1.37) 7.9 × 10−01 0.001

DA 0.65 (0.52, 0.78) 1.1 × 10−21 0.13 (−0.17, 0.43) 3.9 × 10−01 0.01 (−2.09, 2.1) 9.9 × 10−01 0.002

NDA −0.35 (−0.5, −0.21) 1.8 × 10−06 0.02 (−0.32, 0.35) 9.2 × 10−01 −0.18 (−2.48, 2.13) 8.8 × 10−01 0.04

G/G (5337) G/A (923) A/A (38)

rs17861118 Imputed 15 8.3 kb 5′ of CYP1A1 PD 0.49 (0.39, 0.59) 2.6 × 10−21 0.1 (−0.12, 0.33) 3.8 × 10−01 −0.23 (−1.81, 1.35) 7.8 × 10−01 0.001

DA 0.66 (0.52, 0.79) 3.4 × 10−22 0.09 (−0.21, 0.39) 5.6 × 10−01 −0.02 (−2.11, 2.08) 9.9 × 10−01 0.0006

NDA −0.34 (−0.49, −0.19) 5.0 × 10−06 −0.08 (−0.41, 0.24) 6.1 × 10−01 −0.18 (−2.48, 2.13) 8.8 × 10−01 0.08
aAdjusted for study, reference age, case status, former use of menopausal hormone therapy, body mass index, number of pregnancies and principal components. SNP single nucleotide polymorphism, Chr chromosome,
PD percent density (%), square-root-transformed, DA dense area (cm2), square-root-transformed, NDA non-dense area (cm2), square-root-transformed
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modifier of breast cancer risk in BRCA2-mutation car-
riers [48]. The functional role of PLCG2 in breast cancer
has to be further elucidated before it is possible to derive
a model that would explain our findings with PLCG2
variants.
Two studies reported significant interactions between

MHT use and genetic variants in hormone-related genes
on mammographic density [24, 28]. The first study of
232 postmenopausal women in clinical trials of estrogen
therapy and combined estrogen-progesterone therapy in-
vestigated the change in percent mammographic density
between a baseline mammogram and a mammogram
taken at about one year after randomization [24]. Signifi-
cant interactions between the assignment to the estrogen
therapy/combined estrogen-progesterone therapy treat-
ment arm and the CYP1B1 Val432Leu (rs1056836) poly-
morphism and the AKR1C4 Leu311Val (rs17134592)
polymorphism were reported (Pint = 0.0004 and 0.001,
respectively). The CYP1B1 Val432Leu polymorphism
was previously evaluated for interaction with MHT use
in 538 women and no interaction for percent mammo-
graphic density was found (Pint = 0.70) [22]. In this
study, neither the CYP1B1 Val432Leu nor the AKR1C4
Leu311Val polymorphism showed an interaction with
current use of MHT on percent mammographic density
(Pint = 0.19 and 0.47, respectively). The second and lar-
ger study of 2,036 postmenopausal women who attended
the Norwegian Breast Cancer Screening Program re-
ported a significant interaction between SNP rs10946545
located 1.4kb 3′ of PRL and current use of estrogen-
progesterone therapy for percent mammographic density
(Pint = 0.0008) [28]. This SNP did not show a potential
interaction with current MHT use here (Pint = 0.07),
however, the non-significant interaction was in the same
direction as that previously reported [28]. Several other
variants located in the 5′ region of PRL had the lowest
Pint values (Table 3), however, they were not in LD with
rs10946545. The function of those SNPs near PRL is
unknown, the SNP with the strongest interaction
(rs9358531) is not located in an obvious regulatory
element (Additional file 10: Figure S2). PRL encoding
the hormone prolactin may be an interesting candidate
for further studies of interactions between genetic vari-
ants and use of MHT with respect to mammographic
density. In humans, prolactin is primarily produced in
the anterior pituitary gland, but it is also expressed in
the mammary gland itself and adipose tissue, among
others [49]. In postmenopausal women, higher prolactin
levels have been associated with higher mammographic
density in three studies [50–52], two other studies found
no association [53, 54].
Ten loci have been identified by GWAS to be associated

with percent mammographic density, ZNF365-rs10995190
[10, 30], 12q24-rs1265507 [31], and AREG-rs10034692,
PRDM6-rs186749, ESR1-rs12665607, 8p11.23-rs7816345,
LSP1-rs3817198, IGF1-rs703556, TMEM184B-rs7289126,
and SGSM3-rs17001868 [10]. The ZNF365, ESR1, LSP1
and SGSM3 loci are also associated with breast cancer risk
[10, 30], implicating a shared genetic basis of mammo-
graphic density and breast cancer. This is also supported
by the findings of a study, which assessed a polygenic score
based on mammographic density GWAS with respect to
breast cancer risk [8]. Women in the top 10 % of the score
had an associated 31 % increased risk of breast cancer
compared to women in the bottom 10 % of the score. The
locus on 12q24 on the other hand, seems not to be associ-
ated with breast cancer risk [31]. Our data indicated that
associations of the SNPs identified by GWAS with mam-
mographic density are unlikely to be modified by
MHT use.
Unlike in previous studies investigating interactions

between genetic variants and MHT use with regard to
mammographic density, the comprehensive set of SNPs
investigated here was not only based on candidate genes,
but selected also based on genome-wide case-only gene-
environment interaction studies on breast cancer risk.
GWAS have been generally more successful at identify-
ing novel associations with complex diseases than candi-
date gene or linkage studies [55]. Thus, this approach to
selecting SNPs can be considered as more promising.
On the other hand, in doing so we made the fairly
strong assumption that the biological mechanisms in-
volved in the increase in breast cancer risk associated
with MHT use at least in part overlap with the mecha-
nisms involved in the increase in mammographic density
associated with MHT use. This does not necessarily have
to be true, although we identified polymorphisms in
PLCG2 that had interactions with MHT use for both
breast cancer risk and mammographic density.
We were able to account for potential confounders of

the association between current use of MHT and mam-
mographic density such as age, BMI, case status, and
number of pregnancies. All included studies were geno-
typed using the same genotyping platform. The study
design and methods used to measure mammographic
density varied between studies included in this analysis.
However, the estimates for association and interaction
were consistent across studies, supporting the robust-
ness of our results. The sample size of our study was
fairly large and the power was sufficient to detect strong
SNP-MHT interactions on mammographic density with
a beta value of 0.40. However, the power to detect weak
to moderate interactions, in the range we observed in
this dataset with betas of about 0.20, was limited and
would require a sample at least four times larger. It is
therefore possible that we missed potentially relevant in-
teractions. Another limitation is the lack of type-specific
information on MHT use. We could therefore not
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investigate interactions with use of combined estrogen-
progesterone therapies, which seem to be more strongly
associated with an increased mammographic density
than estrogen-only therapies [16, 17]. Studies with type-
specific information on MHT use could therefore also
observe interactions of larger magnitudes compared to
the magnitudes of the interactions observed here. However,
the four genome-wide gene-environment interaction stud-
ies on which we partly based our SNP selection also inves-
tigated solely interactions with use of any MHT.

Conclusion
We observed little evidence for strong interactions be-
tween the investigated SNPs and MHT use on mammo-
graphic density. The study identified variants near PRL
and also in PLCG2 for cases only, as potential modifiers
of the association between MHT use and mammo-
graphic density. These findings will need to be con-
firmed in larger independent studies. The identification
of additional gene-MHT interactions is likely to require
very large (genome-wide) studies with type-specific in-
formation on MHT use, given the likely moderate/weak
magnitude of such interactions.
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