https://ntrs.nasa.gov/search.jsp?R=19920022008 2020-03-17T11:31:55+00:00Z

520915 IN-09 116918 P.41

NASA Contractor Report 189234

Digital Analysis of Wind Tunnel Imagery to Measure Fluid Thickness

Roger L. Easton, Jr. and James Enge Center for Imaging Science Rochester Institute of Technology Rochester, New York 14623-0889

August 1992

Prepared for Lewis Research Center Under Grant NAG3-1202

> (NASA-CR-189234) DIGITAL ANALYSIS OF WIND TUNNEL IMAGERY TO MEASURE FLUID THICKNESS Final Report (Rochester Inst. of Tech.) 41 p

N92-31252

Unclas

G3/09 0116918

ORIGINAL CONTRACT COLOR CARATERIZA

i

CONTENTS

Summary	1
Introduction	2
Measurement Procedure	3
Results	6
Appendix: Statistics of Thickness Measurements	14
Boeing 737 three-dimensional model	14
Boeing 737 two-dimensional model	18
DeHavilland Dash-8 two-dimensional model	26

The lift generated by an airfoil can be disrupted by the presence of viscous fluid on the wing surface. Obviously, the effects are most critical where error margins are smallest, especially during takeoff roll and the early stages of climb to altitude. To study the effects of deicing fluid on lift, the Icing and Cryogenic Technology Branch of the NASA Lewis Research Center conducted more than 300 simulated takeoffs for three different wing models in the Icing Research Tunnel. The model set included two- and three-dimensional models of the Boeing 737 and a two-dimensional model of the deHavilland DASH-8. To avoid any influence of the measurement process on the fluid thickness to be measured, it is necessary to use indirect methods which converting fluid thickness to some remotely measurable physical parameter. The most convenient remote measurements are made by optical means, e.g. by adding a fluorescent dye to the deicing fluid and imaging the wing models under ultraviolet illumination. Under such conditions, the fluorescent emission should be directly related to the fluid thickness, *i.e.* the radiation from a thicker fluid should be more intense than from a thinner fluid. In turn, the radiation from a thicker fluid would generate a photographic negative with greater optical density. For a monotonic relationship between thickness and density, it is possible to convert a measurement of film density to emitted radiance from the fluid, and thus to fluid thickness. The conversion from density to fluid thickness may not be trivial because of the nonlinearities of the entire recording process, especially as indicated by the characteristic curve of the photographic emulsion which relates exposure (light intensity multiplied by exposure time) to recorded density. To provide the necessary calibration for the conversion, each simulated takeoff run included a calibration frame of a metal plate with grooves of known depth from 0.25 mm to 4 mm. The plate was photographed in similar fashion to the simulated takeoffs. The densities measured from the calibration plate were to be used as markers to convert measured densities of the wing images to thicknesses. The calibration was applied to three images taken at selected times in the simulated takeoff run.

Historically, the image density measurements have been made with an optical microdensitometer. The variable aperture size and integration time of such a system allows precise measurements of density to be made on a microscopic scale. The precision is gained at the cost of speed; it may be feasible to scan a single line of an image relatively quickly, but microdensitometer scans of a complete image may require many minutes, or even a few hours. Because of the volume of data to be analyzed, as well as other problems with the imagery, measurements by conventional microdensitometer were deemed impractical for this application. Fortunately, new imaging detectors based on charge-coupled devices (CCDs) are available which allow the measurements formerly made in series by a microdensitometer to be made in parallel with adequate spatial resolution and signal-to-noise ratio to allow appropriate analysis. The CCD detector can be combined with a capable personal computer for image analysis. This report describes a procedure that was developed to analyze the images to calculate the fluid thickness by digital imaging techniques.

The measurement procedure was applied to approximately 1300 images supplied by the Icing and Cryogenic Technology Branch to map thicknesses of deicing fluids during simulated takeoffs for the three wing models. The tests were run under various icing conditions in the NASA Lewis Icing Research Tunnel. The images were digitized to a resolution of 1280 samples and 1024 rows (approximately $1.3 \cdot 10^5$ pixels per image) with a *Hawkeye-II*(TM) CCD digital electronic camera supplied by the Eastman Kodak Company. The digital data was analyzed on an IBM-compatible personal computer using an Intel 80386 processor with 80387 mathematical coprocessor. The digitized calibration image (grooved plate) was used to determine the relationship between emulsion transmittance and fluid thickness. The calibration function was used to compute fluid thickness along selected wing chords in each frame to be analyzed in the takeoff run. The plot of fluid thickness was further analyzed to compute the mean and variance of fluid thickness in the specific area of interest between 0.50 and 0.55 of the wing chord.

2

MEASUREMENT PROCEDURE

The images were digitized with the Kodak Hawkeye-II(TM) digital electronic camera, which uses a Kodak MegaPixel (TM) CCD chip as the photosensitive element. The chip has 1280 x 1024 monochrome elements. The camera is composed of a standard Nikon F3 body, a custom-fabricated camera back which contains the CCD chip, and a separate unit which includes the control panel for the camera and a 100-megabyte hard disk drive for image storage. The camera accepts standard Nikkor (TM) lenses; the 55 mm Micro-Nikkor (TM) was used for the measurements in this study. Because the sensitive area of the CCD chip is smaller than a standard 35 mm frame (approximately 10 mm x 13 mm vs. 24 mm x 36 mm), a special focusing screen with a customized reticle is installed which allows the user to appropriately frame the scene to be recorded.

The image is exposed in nearly identical fashion to a normal 35 mm film camera, except that the incident photons create free electrons in the CCD elements. The electrons are counted by electron current amplifiers to give a measure of the incident radiation. The electron current is quantized to 8 bits (1 byte) of dynamic range, which gives 256 monochrome brightness levels. The dynamic range of 1 byte per pixel translates to a total of 1280 x 1024 bytes per image, or approximately 1.3 megabytes. The hard drive in the control unit has a capacity of 100 megabytes, so that approximately 75 images may be recorded and stored before transferring the data to the pc for analysis. The transfer of the digitized image to the camera hard drive requires less than five seconds, and thus image data may be gathered quite rapidly. The camera system is mounted on a standard Polaroid MP-4 copy stand. The camera height was chosen so that the scale of the digitized image is approximately 25 pixels per mm on the film, which means in turn that approximately 40 mm by 50 mm of the original film could be digitized.

The images from the wind-tunnel tests had been recorded on long rolls of 70 mm Kodak TRI-X film. The rolls were protected by transparent sleeving. For digitization, each film was removed from its sleeve and rolled onto 70 mm spools. A 70 mm film transport was mounted on a small light box and used to carry the film spools, thus allowing accurately repeatable positioning of the film images. The illumination of the light box was determined to be very uniform (measurable variation only near the edges of less than 10%). Tests also were conducted to determine the linear dynamic range of the digitizing camera. The system was demonstrated to be very linear in intensity transmittance τ over the range $1 \le \tau \le 0.01$, which translates to a density range $0 \le D \le 2$.

The camera system is interfaced to an IBM-compatible personal computer through a Small Computer Standard Interface (SCSI) port, which allows images to be transferred to the PC for storage and analysis. The PC is equipped with a 140-megabyte hard drive, with 100 megabytes set aside for image storage. Thus a full disk of images on the camera could be "dumped" at one time to the PC for analysis. The data transfer rate from the camera disk to the computer disk is limited by the SCSI data rate so that approximately 15 seconds are required to transfer one image from the camera disk to the PC disk. A magnetic tape backup from Colorado Memory Systems was purchased for archival image storage. A single tape can store 120 megabytes of uncompressed data or up to 250 megabytes of compressed data per tape. The data transfer rate to tape is extremely slow; about 25 seconds are required to transfer one image, or 30 minutes for a full disk of 80 images. If selected, the optional software data compression added little time to the transfer to tape. However, because the compression algorithm is optimized for text, only about 20% - 30% of storage capacity was saved, and the price paid was quite high as the retrieval time for compressed data was larger than for uncompressed data by more than a factor of two.

3

The images from the CCD camera were displayed on a standard VGA color monitor, which has a spatial resolution of 640 by 480 picture elements and a brightness resolution of 16 monochrome gray levels. It is thus not possible to display the entire CCD image on the monitor at full brightness resolution. Software was written to display the image at reduced spatial and brightness resolution so that the appropriate regions of the image could be selected for analysis. These full-resolution data from the selected areas can be analyzed and the appropriate statistics computed.

After a sequence of four images has been digitized and transferred to the PC, the data was analyzed. The image of the calibration plate was displayed and the mean and variance of gray level was calculated for each of the 17 thicknesses regions (0 mm to 4 mm in increments of 0.25 mm). Segments of a region that had been poorly illuminated were not included in the computation of the statistics. The measurement of the gray level of the zero-thickness region was usually uncertain. It seems likely that "puddles" of fluid remained on the surface of the calibration plate during exposure, which made interpretation of the images more difficult. The statistics were entered into a program to generate the lookup table for the thickness calibration. The digitized images from the takeoff run were displayed in sequence on the PC at reduced resolution and a chord selected for analysis. The data from the chord line was written to a file and stored. The calibration lookup table and the data file were then applied as inputs to software which had been written to perform the thickness computation of the data and compute the desired statistics. The thickness data were displayed and printed, and the mean and variance of the thickness was computed. A compilation of the thickness measurements is presented in Appendix A.

A subset of image sequences was selected for further processing. These images were converted to a format with full brightness and reduced spatial resolution for display on an Imaging Technology Overlay Frame Grabber(TM) using the ImageLab(TM) image processing software package from Werner Frei Associates. The images were displayed and printed using a pseudocolor mapping of fluid thickness. The processing of one image sequence is shown in detail.

To quantify the limitations of the processes of digitization and image analysis, a series of preliminary tests were performed to measure the uniformity of the illumination from the light box, and to measure the linear dynamic range of the HAWKEYE-II (TM) camera. A nominally uniform field from the light box was digitized and the gray levels measured to estimate the illumination uniformity. The field was measured to be uniform to within 10% at the extreme corners of the field. Over the area of interest, the field was uniform to within 3%. The HAWKEYE-II (TM) camera was measured to be uniform over a transmission range of 0.01 to 1, or a range of film density of approximately two. Though less than the linear range obtainable from a microdensitometer, this dynamic range was deemed sufficient for the film data available.

SOFTWARE

To compute the calibration lookup table and analyze the data from the selected wing chords, a program was written for the PC in MicroSoft QuickBASIC (TM) Version 4.5. The program computes the interpolated lookup table from the gray-level statistics of the calibration plate from a data file containing the mean gray values of the 17 thickness segments of the calibration plate. The data are interpolated with a user-selected function to compute the lookup table of fluid thickness corresponding to each of 256 gray levels. The selectable interpolation functions include zero-order interpolation with a rectangle function (also known as nearest-neighbor interpolation), first-order interpolation with a triangle function, secondorder interpolation with a cubic function, and ideal interpolation with the sinc function. A test with simulated data demonstrated that linear interpolation gave the smoothest lookup table, which is the most likely result from physical considerations. The lookup table may be stored as a 256-element data file for later analysis. The wing chord data file is transformed through the lookup table, the statistics are computed, and the results displayed. The statistics are written to the file of statistical data.

The software is included with the digital data files and is available as source code on disk by written request to the author.

.

5

7

RESULTS

The data and analysis for run 227 of the de Havilland Dash-8 wing model are shown in detail in this section, and the measurements of the entire data set are presented in tabular form in the Appendix. This was a typical "good" data set in that the calibration data set was monotonic. The image of the calibration plate was digitized and the gray-level mean and variance computed for the 16 sections of thickness 0.25 mm to 4 mm and for the uncovered surface (fluid thickness of 0 mm). The lookup table from gray level to thickness was computed from the measurements of the calibration plate. The first step was to interpolate the gray levels of the 17 thicknesses to a total of 256 increments over the full thickness range. The resulting lookup table estimates the gray level corresponding to each of 256 thicknesses τ in the interval 0 mm $\leq \tau \leq 4$ mm. This table was "inverted" by exchanging the rows and columns to generate the estimated thickness from the measured gray level.

In some cases, the data from the interpolated lookup table before inversion was not monotonic, *i.e.* the gray level decreased with thickness to a minimum, and then increased with thickness. This is most likely due to solarization of the emulsion due to intense overexposure. To understand this effect, consider the characteristic curve of a photographic emulsion, as illustrated in Figure 1. The curve is a plot of the density D of the photographic negative which would be obtained for different log exposures, where exposure E is defined as irradiance I multiplied by time T. The curve may be divided into five arbitrary regions:

- 1. the underexposed region, where an increase in log E does not change the recorded density D.
- 2. The "toe" of the curve, where an increase in log E produces a gradual increase in slope of the log E D curve.
- 3. The linear part of the curve, where log E and D are proportional.
- 4. The "shoulder" of the curve, where an increase in log E produces a gradual decrease in slope.
- 5. The reversal or solarization region, where an increase in log E generates a reduced density D, so that the slope of D vs. log E is negative.

Because of the apparent difficulty in accurately estimating the emitted radiance of the fluid, the photographic images in this project were exposed on the "shoulder" of the characteristic curve, *i.e.* the images were generally overexposed. In some cases, overexposure was extreme enough to solarize the image. In solarization, the incident radiation interacts to generate free halogen in the emulsion which "shields" the latent image from development. Thus many of the overexposed photographic grains are not converted to silver, which results in a decrease in density with increasing exposure. In the solarized images, an area of near-maximum density may have been generated by exposure on the shoulder or in the solarized region. Thus the lookup table is double-valued and may not be inverted. When this effect occurred in the data, the solarization region was rejected to force the data to be single-valued so that the thickness maps are biased toward lower values.

If a similar experiment is performed in the future with film as the detector, care should be taken to prevent solarization by ensuring that the film is exposed on the linear portion of the characteristic curve.

The input data and computed lookup tables for Run 227 are shown in Figure 2. Note that the "negatives" were digitized so that the low gray levels occur in the denser regions of the negative, which are due to the emitted radiance from thick fluid. Because the exposure is up on the "shoulder" of the characteristic curve, a large change in thickness results in a small change in gray level. In the inverted lookup table, the slope of the calibration curve of gray

Log E Figure 1: Characteristic Curve of Typical Photographic Film

level vs. thickness is quite steep for large thicknesses, and thus the precision of the measurement is most uncertain for large thicknesses. This is demonstrated most clearly in cases where the slope of the lookup table was very steep for thick fluid concentrations. If thick regions exist on the wing images, the chord thickness map is visibly quantized, *i.e.* a change in measured radiance of a single gray level transforms through the lookup table to a large change in thickness. This is due to the overexposure of the film and cannot be compensated by *a posteriori* means.

After computing the calibration lookup table, the other three digitized images of the run were displayed in sequence and the gray levels of a chord were read into a data file. Care was taken to ensure that the same (or nearly the same) chord was used each time, within the constraints of the quality of the individual images. If the image exhibited regions of nonuniform exposure in the area of the selected chord, a different but nearby chord was used. Fortunately, this was usually not a problem. The statistics of the chord were calculated by the program. The raw data and the transformed thickness maps of the chord from Run 227, Frame 722 are shown in Figure 3. Note that darker areas of the raw data indicate regions of thicker fluid concentration.

The thickness calibration can also be applied to the entire wing image so that the monochrome gray level of the image is proportional to the fluid thickness. Such an image theoretically conveys all the information available. However, the brightness resolution of the human eye in monochrome is quite limited; it has been estimated that an adapted eye can distinguish approximately 50-70 levels. This thus restricts the information actually visible. However, the eye can distinguish many colors, and it is quite common to remap an image with subtle changes in gray level to pseudocolor to make the information more visible. Selected images of the Dash-8 were displayed in pseudocolor using the Werner Frei ImageLAB image processing software package from Werner Frei Associates of Venice, California. This is a PC-based system which uses the Overlay Frame Grabber from Imaging Technology. Only a 512 row by 512 column image may be displayed, so the images were decimated before mapping. The monochrome and pseudocolor calibrated image sequences for Run 227, including the calibration plate and three chord images, are shown in Figure 4 and Figure 5, respectively. In the pseudocolor mapping, the colors were selected to match the first four thickness levels, i.e. red denotes thicknesses of 0.25 mm, green to 0.5 mm, light blue to 0.75 mm, and dark blue to regions of thickness greater than or equal to 1 mm. The steep slope of the lookup table for large thickness made it difficult to assign colors unambiguously.

Due to the volume of data, the complete set of thickness maps for all runs is not included in this report. The maps have been transmitted to the Icing and Cryogenic Technology Branch of the NASA Lewis Research Center and are also available upon request.

8

Figure 2: Calibration of Run 227

9

Figure 3 -- Run 227, Frame 722, Raw Data (top) and Thickness Map (bottom)

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 4: Monochrome Image Sequence for Run 227 After Calibration Upper Left -- Calibration Plate Upper Right -- Wing Image Taken 10 Seconds After Roll Lower Left -- Wing Image Taken 13 Seconds After Roll Lower Right -- Wing Image Taken 16 Seconds After Roll

ORIGINAL PAGE COLOR PHOTOGRAPH

Figure 5: Pseudocolor Image Sequence for Run 227 Upper Left -- Calibration Plate Upper Right -- Wing Image Taken 10 Seconds After Roll Lower Left -- Wing Image Taken 13 Seconds After Roll Lower Right -- Wing Image Taken 16 Seconds After Roll

RECOMMENDATIONS

The experimental procedure for gathering the original data set and analyzing the images is fundamentally sound, but the results indicate that the effort was not entirely successful. This was due primarily to the limitations of the photographic film used for the original images, and most fundamentally to its nonlinear response. The requirements of brightly illuminating the experimental scene at short intervals made it difficult to precisely estimate the exposure setting for the film each time. As a result, the film was often overexposed, and occasionally to the point where solarization occurred. In either of these cases, the precision of measurement in the thickest regions of the fluid is limited. In addition, the images of the calibration plate must be obtained under absolutely repeatable conditions, i.e. the surface of the plate must be entirely free from fluid so that an accurate determination of the gray level for zero thickness can be made.

As a result of this effort, we propose the following recommendations for any future measurements.

- 1. To avoid the difficulties resulting from the nonlinear response of photographic film, we recommend that an electronic imaging system using a charge-coupled device (CCD) detector be used to gather data. Such systems are now available with sufficient spatial resolution (up to 2000 picture elements) from several vendors, including Eastman Kodak. CCD cameras may be used in linear mode so that the gray level of a pixel will be proportional to the incident irradiance. The images can be stored rapidly and examined immediately. Though the cameras are still expensive (\$10,000 or more), the cost of film and subsequent digitization is eliminated.
- 2. One constraint on this effort was the limited resolution and data capacity of the computer. Since this effort was carried out, new inexpensive systems which can display full-resolution images are available which can read the images from the new CCD cameras directly.
- 3. A measurement of the actual illumination for each exposure would allow variations to be compensated. A simple photocell could be positioned in the scene and its output recorded. Multiple detectors at different points in the scene could be used to measure coarse nonuniformities in illumination.
- 4. If feasible, a calibration should be included in every frame to ensure the precision of the thickness mapping. It could be attached to the wing model if this did not interfere with the air flow.

APPENDIX: STATISTICS OF THICKNESS MEASUREMENTS

The normalized statistics (mean and variance) of the thickness in the range of 0.5 - 0.55 of chord are tabulated for all runs of the three wing models.

Statistics File for Wing Data, Boeing 737, 3-D model

 μ = mean thickness in chord interval 50%-55% [mm] Normalized Mean = Mean/305mm σ = standard deviation of mean value [mm]

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
D70 049	0 173	5 60.10-4	0.112	10
D70 052	0.175	2.09.10-4	0.112	10
R70-052	0.000	2.02°10 °	0.020	23
K/0-034	0.108	5.52.10 -	0.017	26
R71-077	0.488	1.60·10 ³	0.027	10
R71-081	0.137	4.50.10-4	0.071	23
R71-083	0.179	5.88.10-4	0.154	26
R72-108R	0 423	1 39.10-3	0 338	10
R72-113B	0.168	5 49.10-4	0.000	10
D72-114B	0.108	6 92.10-4	0.018	23
R/2-11-D	0.206	0.62.10	0.057	20
R80-170	0.109	3.56.10-4	0.011	10
R80-176	0.072	2.36.10-4	0.014	29
R80-177	0.072	2.36.10-4	0.015	32
R81-200	0 352	1 15.10-3	0 158	10
P81_200	0.162	5 30.10-4	0.156	10
D81_204	0.102	J.J0-10	0.013	25
R01-20J	0.150	4.91.10	0.012	20
R83-223	0.653	2.14.10-3	0.118	10
R83-227	0.164	5.36.10-4	0.039	23
R83-228	0.126	4.13-10-4	0.029	26
R84-253	0.600	1 97.10-3	0 497	10
R84_257	0.174	5 70.10-4	0.407	10
D84_258	0.174	5.70°10 6.00.10 -4	0.022	23 26
NOT-236	0.160	0.09.10	0.018	20
R86-276	0.417	1.37·10 ⁻³	0.286	10
R86-280	0.123	4.02.10-4	0.020	23
R86-281	0.094	3.09-10-4	0.023	26
R87-299	0 277	9.07.10-4	0.085	10
R87-303	0.156	5 12.10	0.000	10
D87_304	0.130	5 72.10	0.020	23
NO1-JU4	0.175	J.72.10	0.024	20
R93-319	0.660	2.16·10 ⁻³	0.073	10
R93-323	0.192	6.30.10-4	0.034	23
R93-324	0.148	4.86.10-4	0.012	26

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R94-344	0.156	5 12-10-4	0.023	10
R94_348	0.067	2 20.10-4	0.025	10
R94-349	0.126	4.14.10-4	0.051	23 26
R95–370	0.199	6.54.10-4	0.044	10
R95-374	0.132	4.34.10-4	0.042	23
R95–375	0.095	3.13.10-4	0.022	26
R97-386	0.107	3.50.10-4	0.026	10
R97-390	0.048	1.59.10-4	0.013	23
R97-391	0.051	1.67.10-4	0.021	26
R98-418	0.298	9.78.10-4	0.176	10
R98-421	0.197	6.47.10-4	0.017	20
R98-422	0.233	7.63.10-4	0.031	23
R100-435	0.279	9.14.10-4	0.194	10
R100-439	0.089	2.93.10-4	0.016	23
R100-440	0.090	2.96.10-4	0.021	25
	0.070	2.70 10	0.021	20
R101-456	0.283	9.27.10-4	0.062	10
R101-460	0.115	3.78.10-4	0.023	23
R101-461	0.106	3.48.10-4	0.018	26
R102_479	0 149	4 80.10-4	0 022	10
D102-483	0.147	2 95.10-4	0.025	10
D102-484	0.117	3.03·10 ·	0.010	23
K102-404	0.124	4.07.10	0.020	26
R110-506	0.213	6.98.10-4	0.082	10
R110-514	0.210	6.90.10-4	0.026	23
R110-516	0.310	1.02·10 ⁻³	0.069	26
R112-551	0.256	8 39-10-4	0 302	10
R112-555	0.134	4 40.10-4	0.002	22
R112-555	0.134	5 69.10-4	0.010	23
K112-550	0.175	2.00.10	0.014	20
R114-546	0.536	1.76-10-3	0.106	10
R114-550	0.217	7.12.10-4	0.136	23
R114-551	0.131	4.30.10-4	0.022	26
R115-567	0.203	6 67.10-4	0.008	10
R115_571	0.093	3 04.10-4	0.000	10
R115_572	0.027	3 19.10-4	0.022	23 26
12115-574	0.077	3.10.10	0.022	20
R116-588	0.495	1.62·10 ⁻³	0.437	10
R116-592	0.115	3.78.10-4	0.040	23
R116-593	0.116	3.80.10-4	0.038	26
			· -	

Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
R120-611	0 446	1 46.10-8	0.050	10
P120-615	0.124	1.4010	0.000	10
D120-015	0.124	2 69.10	0.028	23
R120-010	0.112	3.08.10	0.031	26
R121-636	0.522	1.71·10 ⁻³	0.096	10
R121-640	0.195	6.39.10-4	0.042	23
R121-641	0.199	6.53.10-4	0.044	26
R123-657	0.525	1 72.10-3	0 104	10
R123-661	0 113	3 69.10-4	0.000	10
R123-662	0.095	3 11.10-4	0.020	23
1125-002	0.075	5.11.10	0.018	20
R124-675	1.378	4.52.10-3	1.182	10
R124-679	0.206	6.76.10-4	0.022	23
R124-680	0.145	4.74.10-4	0.015	26
R126-701	0.198	6.48.10-4	0.018	10
R126-702	0 244	8.00.10-4	0.018	10
R126-702	0.347	1 14.10-3	0.055	25
1(120-703	0.547	1.14.10	0.102	26
R127-718	0.166	5.43.10-4	0.016	10
R127-722	0.083	2.71.10-4	0.025	23
R127-723	0.074	2.43.10-4	0.012	26
R128-741	0.198	6.49.10-4	0.030	10
R128-745	0 128	4 21.10-4	0.030	10
R128-746	0.120	4.01.10-4	0.010	20 24
	0.122	4.01-10	0.025	20
R137-765	1.127	3.69·10 ⁻³	0.114	10
R137-772	0.912	2.99·10-3	0.057	29
R137-773	0.926	3.04.10-3	0.032	32
R138-788	0.455	1 40.10-3	0 125	10
R138-792	0.455	7 20.10-4	0.125	10
D138_703	0.220	7.20°10 °	0.120	23
R130-793	0.162	5.33.10-	0.010	26
R140-809	0.513	1.68·10 ⁻³	0.317	10
R140-813	0.326	1.07·10 ⁻³	0.262	23
R140-814	0.187	6.12.10-4	0.022	26
R141-832	0.257	8.44.10-4	0 178	10
R141-836	0.103	3.38-10-4	0.013	20
R141-837	0 123	4 04.10-4	0.013	<i>22</i> 25
	V.160J		0.010	23
R142-854	0.327	1.07·10 ⁻³	0.114	10
R142-858	0.128	4.21.10-4	0.010	23
R142-859	0.107	3.49.10-4	0.013	26

-	Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
	R144-878	0 679	2 23.10-3	0 385	10
	R144-882	0.157	5 13.10-4	0.062	23
	R144-883	0.095	3 11.10-4	0.002	25
			0.11 10	0.010	20
	R145-900	0.492	1.61·10 ⁻³	0.109	10
	R145-904	0.097	3.19.10-4	0.013	23
	R145-905	0.086	2.81.10-4	0.017	26
	R146-924	0.201	6.61.10-4	0.100	10
	R146-928	0.117	3.83.10-4	0.020	23
	R146-929	0.098	3.22.10-4	0.019	26
	R148-941	0.225	7.37.10-4	0.014	10
	R148-943	0.296	9.70.10-4	0.121	16
	R148-944	0.228	7.48.10-4	0.084	19
	5.40.040				
	R149-960	0.656	2.15.10-3	0.225	10
	R149-964	0.187	6.12.10-	0.137	23
	R149-965	0.131	4.30.10-	0.016	26
	D1(0.000	0.447			
	R160-080	0.447	1.4/.10-3	0.097	10
	R100-084	0.237	7.77.10-	0.022	23
	R100-085	0.239	7.82.10	0.032	26
	P161-101	0.782	2 56.10-8	0.469	10
	R161-101	0.000	0	0.408	10
	R161-106	0.000	0	0.000	23
	12101-100	0.000	U	0.000	20
	R162-122	0.490	1.61.10-3	0 125	10
	R162-126	0.234	7.67.10-4	0.125	23
	R162-127	0.092	3.03.10-4	0.046	26
			0.00 10	0.040	200
	R163-140	0.570	1.87·10 ⁻³	0.231	10
	R163-144	0.078	2.57.10-4	0.079	23
	R163-145	0.026	8.53·10 ⁻⁵	0.040	26
	R164-160	1.052	3.45·10 ⁻³	0.354	10
	R164-164	0.301	9.87.10-4	0.062	23
	R164-165	0.259	8.51.10-4	0.034	26

Statistics File for Wing Data, Boeing 737, 2-D model

 μ = mean thickness in chord interval 50%-55% [mm] Normalized Mean = Mean/457mm σ = standard deviation of mean value [mm]

Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
R255-176	0.448	9.79.10-4	0.050	10
R255-180	0.105	2.29.10-4	0.015	23
R255-181	0.081	1 76.10-4	0.015	25
10255 101	0.001	1.70 10	0.015	20
R256-208	0.653	1.43·10 ⁻³	0.143	10
R256-212	0.156	3.41.10-4	0.016	23
R256-213	0.155	3.39.10-4	0.014	26
R257-229	0 564	1 23-10-8	0.065	10
R257-233	0.021	4 60.10-5	0.005	23
R257-233	0.021	4.00 10	0.018	23
12237-234	0.000	U	0.000	20
R258-263	0.611	1.33·10 ⁻³	0.059	10
R258-267	0.000	0	0.000	23
R258-268	0.000	0	0.000	26
D271-286	0 566	1 22.10-8	0.059	10
D271_200	0.000	6 00.10-5	0.036	10
R2/1-270	0.031	0.90.10	0.021	23
R2/1-291	0.012	2.61.10-	0.011	26
R272-321	0.531	1.16·10 ⁻³	0.143	10
R272-325	0.111	2.43.10-4	0.014	23
R272-326	0.081	1.76-10-4	0.009	26
R274_341	1 009	2 21.10-3	0 169	10
R274_345	0 189	4 13.10-4	0.108	10
D274_346	0.133	2 00.10 4	0.008	25
N2/4-340	0.155	2.90.10	0.008	20
R275-377	0.763	1.67·10 ⁻³	0.321	10
R275-381	0.138	3.01.10-4	0.010	23
R275-382	0.100	2.19.10-4	0.017	26
R280-388	2.106	4 61.10-3	0 640	10
R280-400	0 229	5 00.10-4	0.008	22
R280-401	0.192	4 21.10-4	0.000	25
10200-401	0.172	4.21 10	0.008	20
R281-417	1.164	2.55·10 ⁻³	0.152	10
R281-421	0.197	4.31.10-4	0.021	23
R281-422	0.141	3.07.10-4	0.012	26
R282-436	0.518	1 13.10-3	0 047	10
R282_440	0.020	1 94.10-4	0.017	22 10
R282_440	0.037	1 61.10	0.012	20 22
1206-111	0.0/7	1.01.10	0.011	20

B-737	2-D
-------	-----

 Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
R284-455	0.509	1 11-10 ⁻³	0.110	10
D284_450	0.367	3 52.10-4	0.002	- 10
D284_460	0.069	1 51.10-4	0.023	25
N204-400	0.009	1.51.10	0.018	20
R285-474	0.395	8.60.10-4	0.090	10
R285-478	0.156	3.41.10-4	0.022	23
R285-479	0.088	1.93.10-4	0.018	26
R286-494	0.727	1.59.10-3	0.034	10
R286-498	0.268	5 86.10-4	0.034	22
R286-499	0.200	4 88.10-4	0.037	23
1200-477	0.225	7.00'10	0.010	20
R287-514	0.884	1.93·10 ⁻³	0.377	10
R287-518	0.243	5.31.10-4	0.026	23
R287-519	0.199	4.34.10-4	0.013	26
R288-533	0.631	1.38·10 ⁻³	0 185	10
R288-537	0.198	4 33.10-4	0.100	23
R288-538	0.163	3 57.10-4	0.018	23
1200-330	0.105	5.5710	0.029	21
R302-555	0.819	2.79·10 ⁻³	0.096	10
R302-559	0.138	3.03.10-4	0.032	23
R302-560	0.084	1.84.10-4	0.021	27
R304-609	0.001	2 41.10-6	0.004	10
R304-613	0.064	1 39.10-4	0.004	10
R304-614	0.000	0	0.004	23
1004-014	0.000	v	0.000	20
R305-644	0.118	2.58.10-4	0.042	10
R305-648	0.004	7.70.10-6	0.010	23
R305-649	0.034	7.47 ·10 ⁻⁵	0.052	26
R309-695	0 438	9 53.10-4	0.026	10
R309_699	0.438	2 50.10-4	0.030	10
D 300_700	0.119	2.37.10	0.018	23
1509-700	0.112	2.43.10	0.022	26
R311-723	0.698	1.53·10 ⁻³	0.049	10
R311-727	0.211	4.62.10-4	0.011	23
R311-728	0.184	4.03.10-4	0.010	26
R312-755	0 501	1 09.10-3	0 140	10
R312-759	0 196	4 29.10-4	0.140	10
R312-760	0.161	3 52.10-4	0.009	23 26
12012-100	0.101	5.55.10	0.008	20
R313-774	1.275	2.79·10 ⁻³	0.876	10
R313-778	0.222	4.85.10-4	0.006	23
R313-779	0.205	4.48.10-4	0.011	26

Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
R314-808	2.245	4 91.10-3	1.006	10
R314-812	0.239	5 22.10-4	0.015	23
D314_813	0.239	4 70.10-4	0.013	25
K31 + 015	0.217	4.75.10	0.002	20
R316-827	0.894	1.95·10 ⁻³	0.199	10
R316-831	0.258	5.63.10-4	0.032	23
R316-832	0.228	4.98.10-4	0.009	26
R317-860	0 787	1 72.10-8	0 1/3	10
D317-864	0.707	6 51.10-4	0.145	10
D317-865	0.276	4 05.10-4	0.042	23
K317-005	0.220	4.95.10	0.008	20
R318-878	0.510	1.11·10 ⁻³	0.072	10
R318-882	0.277	6.05.10-4	0.033	23
R318-883	0.221	4.83.10-4	0.008	26
D310_805	0 501	1 00.10-3	0.070	10
D310_800	0.204	A 47.10-4	0.070	10
D210 000	0.204	4.4/10	0.009	23
K317-700	0.197	4.30.10	0.009	26
R322-914	0.386	8.47.10-4	0.015	10
R322-918	0.282	6.17.10-4	0.042	23
R322-919	0.225	4.91.10-4	0.007	26
R323-951	0 306	6 67.10-4	0.038	10
R322-951	0.178	3 89.10-4	0.038	10
P323_956	0.175	3.35-10	0.011	23
1325-750	0.155	3.30.10	0.012	20
R326-969	0.257	5.61.10-4	0.052	10
R326-973	0.113	2.47.10-4	0.034	23
R326-974	0.078	1.70-10-4	0.027	26
			0.027	20
R327-002	0.211	4.61.10-4	0.010	10
R327-006	0.070	1.53-10-4	0.015	23
R327-007	0.076	1.66-10-4	0.035	26
R340_020	0 310	6 78.10-4	0.026	10
D340_024	0.310	6 20.10-4	0.030	10
D340-024	0.200	5.51.10-4	0.020	25
K340-023	0.232	5.51.10	0.028	26
R341-040	0.429	9.39.10-4	0.062	10
R341-043	0.211	4.62.10-4	0.010	20
R341-044	0.210	4.60.10-4	0.015	23
R342_054	1 150	2 52.10-3	0 271	10
D342-034	0.200	6 25 10-4	0.271	10
D212 050	0.270	6.33'IV -	0.001	20
RJ42-UJ7	0.229	2.01.10-	0.008	23

.

B-737 2-D

B -737	2-D
---------------	-----

-

Run-Frame	μ [mm]	μ /length	σ [mm]	t [seconds]
R344-074	1 408	3 08.10-3	0.054	10
D344_074	0.215	J.00-10	0.007	10
D344 070	0.215	4.70.10	0.007	23
K344-079	0.225	4.92.10	0.007	26
R345-091	2.457	5.38·10 ⁻³	1.235	10
R345-095	0.197	4.31.10-4	0.018	23
R345-096	0.210	4.60.10-4	0.015	26
D346-108	0 660	1 46.10-8	0 221	10
D246 110	0.007	1.40°10 6.00.10-4	0.331	10
D246 112	0.273	6.02·10 ·	0.034	23
K340-113	0.243	5.32.10-	0.015	26
R347-126	1.182	2.59·10 ⁻³	0.255	10
R347-130	0.250	5.47.10-4	0.033	23
R347-131	0.218	4.77.10-4	0.007	26
D353, 145	1 220	2 94.10-3	0.010	10
D252 140	1.550	2.04.10	0.212	10
D252 150	0.307	1.11.10 -	0.058	23
K333-130	0.408	1.02.10-0	0.046	26
R354-163	0.978	2.14.10-3	0.251	10
R354-167	0.345	7.55.10-4	0.048	23
R354-168	0.277	6.06.10-4	0.047	26
P355_195	1 021	2 22.10-3	0 274	10
D355_100	0 304	2.23.10	0.320	10
D355-200	0.354	6.02.10	0.025	23
1555-200	0.302	0.01.10	0.005	26
R356-227	1.146	2.51·10 ⁻³	0.282	10
R356-231	0.231	5.05.10-4	0.036	23
R356-232	0.212	4.64.10-4	0.066	26
R358-247	0 560	1 22.10-3	0 109	10
P358-251	0.300	A 64.10-4	0.106	10
D359-251	0.212	4.04.10	0.040	23
RJJ0-2J2	0.231	5.05.10-	0.025	26
R359-279	0.364	7.96.10-4	0.070	10
R359-283	0.220	4.81.10-4	0.011	23
R359-284	0.159	3.84.10-4	0.041	26
R361_208	3 07/	9 70.10-3	0.107	10
D261_200	0.279	0.70'10 -	0.19/	10
RJU1-JU2 D261 202	0.312	5.14·10-	0.054	23
K301-303	0.201	5./1.10-	0.041	26
R362-331	2.212	4.84·10 ⁻³	1.088	10
R362-335	0.270	5.91.10-4	0.037	23
R362-336	0.270	5.91.10-4	0.037	26

B-737	2-D
-------	-----

Run-Frame	μ [mm]	μ /length	σ [mm]	t [seconds]
R363-348	0.651	1 42.10-3	0.092	10
P363_352	0.001	5 95.10-4	0.032	10
D263 352	0.272	5.02.10-4	0.030	23
K202-222	0.250	5.03.10	0.010	20
R364-365	0.840	1.84·10 ⁻³	0.120	10
R364-369	0.327	7.16.10-4	0.033	23
R364-370	0.281	6.15.10-4	0.035	26
R365-397	0 823	1 80.10-3	0 122	10
R365-401	0.563	1 23.10-3	0.122	10
D365-402	0.305	9.95.10-4	0.072	23
K305-402	0.405	0.03.10	0.045	20
R366-431	0.737	1.61·10 ⁻³	0.113	10
R366-435	0.630	1.38·10 ⁻³	0.097	23
R366-436	0.464	1.02.10-3	0.069	26
R376-454	0 668	1 46-10-3	0.076	10
R376-458	0.412	9.01.10-4	0.070	10
D376_450	0.720	6 32.10-4	0.032	25
1.370-437	0.289	0.52.10	0.032	20
R377-473	0.625	1.37-10-3	0.088	10
R377-477	0.292	6.39.10-4	0.051	23
R377-478	0.205	4.49.10-4	0.024	26
R381-505	0.156	3.41.10-4	0.003	10
R381-509	0.043	9 51.10-5	0.005	23
R381-510	0.051	1 11.10-4	0.010	2
1001-510	0.031	1.11-10	0.029	20
R382-523	0.165	3.60.10-4	0.017	10
R382-527	0.073	1.60.10-4	0.021	23
R382-528	0.061	1.34.10-4	0.024	26
			0.021	20
R383-543	0.064	1.41.10-4	0.009	10
R383-548	0.033	7.11·10 ⁻⁵	0.012	23
R383-549	0.006	1.31.10-5	0.008	26
R385-563	1.021	2 24.10-3	0.106	10
P385_567	0.280	6 22.10-4	0.100	10
D395 569	0.207	4 90.10-4	0.000	23
K30J-508	0.224	4.07.10	0.014	20
R386-593	0.975	2.13·10 ⁻³	0.132	10
R386-597	0.287	6.29.10-4	0.036	23
R386-598	0.210	4.61.10-4	0.032	26
P327_611	0 567	1 24.10-8	0.040	10
D397_K15	0.507	1.4.10-5	0.049	10
D207 414	0.521	1.14.10 -	0.043	23
K30/-010	0.210	1.12.10-	0.044	26

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R387-611A	0.226	4.96.10-4	0.008	10
R387-615A	0.236	5.16.10-4	0.016	23
R387-616A	0.227	4.98.10-4	0.008	· 26
			0.000	20
R391-644	0.689	1.51.10-3	0.073	10
R391-648	0.599	1.31.10-3	0.073	23
R391-649	0.353	7.73.10-4	0.042	26
R392-663	0.721	1.58.10-3	0 176	10
R392-667	0.629	1.38.10-3	0.072	23
R392-668	0.493	1 08.10-3	0.072	25
1072 000	0.470	1.00 10	0.074	20
R395-681	0.979	2.14.10-3	0.070	10
R395-685	0.787	1.72·10 ⁻³	0.105	23
R395-686	0.504	1.10·10 ⁻³	0.040	26
D206 600	0.640	1 40 10-8	0.000	
R390-099	0.040	1.40.10	0.098	10
R396-703	0.192	4.21.10	0.014	23
R390-704	0.141	3.10-10-	0.012	26
R397-717	0.621	1.36·10 ⁻³	0.054	10
R397-721	0.277	6.06.10-4	0.046	23
R397-722	0.212	4.64.10-4	0.012	26
P 398_736	0.411	9.00.10-4	0.000	10
R398_740	0.102	4 20.10-4	0.022	10
D 308-741	0.112	7.20-10	0.023	23
1370-141	0.115	2.40.10	0.017	20
R399-754	0.572	1.25·10 ⁻³	0.109	10
R399-758	0.282	6.17.10-4	0.066	23
R399-759	0.209	4.57.10-4	0.021	26
P400_772	1 256	2 75.10-8	0.762	10
R400-772	0 327	7 16.10	0.203	10
D400-777	0.327	5 00.10-4	0.040	23
K400-777	0.235	5.09.10	0.023	26
R405-790	0.917	2.01·10 ⁻³	0.153	10
R405-794	0.223	4.88.10-4	0.021	23
R405-795	0.199	4.36.10-4	0.016	26
D404 900	0.050	2 00 10-3	0.075	
R400-809	0.950	2.08.10-3	0.275	10
R400-813	0.200	4.3/.10	0.010	23
K400-814	0.181	3.96.10**	0.013	26
R408-827	0.963	2.11·10 ⁻³	0.098	10
R408-831	0.181	3.96.10-4	0.009	23
R408-832	0.160	3.49.10-4	0.012	26

D-131 2-D	B -	737	2-D
-----------	------------	-----	-----

Run-Frame	μ [mm]	μ /length	σ [mm]	t [seconds]
R409-847	0.966	2.11·10 ⁻³	0.466	10
R409-851	0.139	3.03.10-4	0.012	23
R409-852	0.156	3.41.10-4	0.012	26
R410-865	0.880	1.93·10 ⁻³	0.409	10
R410-869	0.249	5.44.10-	0.035	23
R410-870	0.206	4.50.10-4	0.024	26
R411-883	0.222	4.87.10-4	0.015	10
R411-887	0.035	7.60.10-5	0.019	23
R411-888	0.034	7.36.10-5	0.015	26
R413-899	1.010	2.21·10 ⁻³	0.220	10
R413-903	0.518	1.13·10 −3	0.030	23
R413-904	0.451	9.87.10-4	0.033	26
DA1A 017	1 104	2 61.10-3	0 145	10
DA14 001	1.174	2.01.10	0.145	10
R414-921	0.215	4.70.10	0.007	23
R414-922	0.137	3.00-10-	0.039	26
R429-936	0.660	1.44·10 ⁻³	0.067	10
R429-941	0.157	3.44.10-4	0.010	23
R429-942	0.124	2.72.10-4	0.010	26
D/30 055	0 795	1 77.10-8	0.100	10
R430-733	0.765		0.190	10
R430-300	0.451	9.88.10-	0.025	23
K430-901	0.393	8.01.10-	0.037	26
R431-974	0.659	1.44·10 ⁻³	0.121	10
R431-979	0.223	4.87.10-4	0.012	23
R431-980	0.196	4.30.10-4	0.010	26
				20
R432-994	0.155	3.40.10-4	0.013	10
R432-999	0.126	2.76.10-4	0.036	23
R432-000	0.143	3.14.10-4	0.045	26
R434-008	0.611	1 34.10-3	0.033	10
R434_011	0.798	1 75.10-3	0.033	10
P434_012	0.758	1.73.10	0.117	23
12454-012	0.407	1.03.10	0.028	26
R435-028	0.656	1.44·10 ⁻³	0.064	10
R435032	0.174	3.80.10-4	0.019	23
R435-033	0.167	3.65.10-4	0.028	26
R436-045	1.340	2 93.10-3	0 103	10
R436_050	0 235	5 15.10-4	0.103	10
PA26_051	0.225	5.15.10	0.030	دی ۲
127-021	0.270	2.20.10	0.033	20

-

			B-737
μ [mm]	μ /length	σ [mm]	t [seconds]
			_
0.305	6.67.10-4	0.029	10
0.172	3.76.10-4	0.011	23
0.136	2.97.10-4	0.013	26
0.410	8.98.10-4	0.040	10
0.196	4.29.10-4	0.011	23
0.147	3.22.10-4	0.011	26
0.647	1.41.10-3	0 023	10
0.193	4.23.10-4	0.018	23
0.144	3.16.10-4	0.017	26
0 226	7 14 10-4	0.051	10
0.320	7.14.10 -	0.051	10
0.030	1.23.104	0.026	23
0.077	1.68.10-	0.041	26
0.872	1.91·10 ⁻³	0.262	10
0.529	1.16-10-3	0.085	23
0.392	8.58.10-4	0.058	26

R439-084	0.410	8.98.10-4	0.040	10
R439-089	0.196	4.29.10-4	0.011	23
R439-090	0.147	3.22.10-4	0.011	25
		0.22 10	0.011	20
R440-103	0.647	1.41·10 ⁻³	0.023	10
R440-108	0.193	4.23.10-4	0.018	23
R440-109	0.144	3.16.10-4	0.017	26
			0.017	20
R441-122	0.326	7.14.10-4	0.051	10
R441-127	0.056	1.23.10-4	0.026	23
R441-128	0.077	1.68.10-4	0.041	26
R446-140	0.872	1.91·10 ⁻³	0.262	10
R446-145	0.529	1.16-10-3	0.085	23
R446-146	0.392	8.58.10-4	0.058	26
R447-163	0.939	2.05·10 ⁻³	0.285	10
R447-168	0.531	1.16.10-3	0.085	23
R447-169	0.418	9.16.10-4	0.036	26
R454-008	0.843	1.85·10 ⁻³	0.259	10
R454-012	0.196	4.29.10-4	0.040	23
R454-013	0.097	2.11.10-4	0.024	26
R455-027	0.462	1.01.10-3	0.067	10
R455-031	0.120	2.63.10-4	0.020	23
R455-032	0.132	2.89.10-4	0.032	26
R457-045	1.586	3.47·10 ⁻³	0.742	10
R457-049	0.404	8.85.10-4	0.037	23
R457-050	0.315	6.90.10-4	0.044	26
R458-070	0.636	1.39·10 ⁻³	0.067	10
R458-074	0.168	3.69.10-4	0.021	23
R458-075	0.161	3.51.10-4	0.027	26
		_		
R459-087	0.786	1.72·10 ⁻³	0.138	10
R459-091	0.370	8.09.10-4	0.054	23
R459-092	0.271	5.92.10-4	0.043	26
D460 105	1.00/	• • • • •		
K460-105	1.206	2.64.10-3	0.253	10
K460-109	0.389	8.52.10	0.050	23
K460-110	0.261	5.71.10-4	0.028	26

Run-Frame

R438-065 R438-070 R438-071

Statistics File for Wing Data, De Havilland DASH-8, 2-D model

 μ = mean thickness in chord interval 50%-55% [mm] Normalized Mean = $\mu/457$ σ = standard deviation of mean value [mm]

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R024-009	3.093	6.77·10 ⁻³	1,181	10
R024-010	0.746	1.63·10 ⁻³	0.475	13
R024-011	0.562	1.23.10-3	0.058	16
R025-025	0.003	6.98 ·10 ^{-€}	0.006	10
R025-026	0.001	2.64.10-6	0.004	13
R025-027	0.084	1.83.10-4	0.039	16
R026-041	0.205	4.48.10-4	0.016	10
R026-042	0.208	4.56.10-4	0.018	13
R026-043	0.240	5.25.10-4	0.008	16
R028-052	0.261	5.71-10-4	0.035	10
R028-053	0.251	5.49-10-4	0.028	13
R028-054	0.256	5.60.10-4	0.025	16
R029-067	1.089	2.38·10 ⁻³	0.617	10
R029-068	0.462	1.01·10 ⁻³	0.064	13
R029-069	0.383	8.37.10-4	0.033	16
R030-082	0.233	5.09.10-4	0.007	10
R030-083	0.230	5.04.10-4	0.007	13
R030-084	0.227	4.96.10-4	0.008	16
R032-099	0.518	1.13·10 ⁻³	0.062	10
R032-100	0.440	9.63.10-4	0.092	13
R032-101	0.331	7.24.10-4	0.038	16
R033-116	0.748	1.64·10 ⁻³	0.099	10
R033-117	0.434	9.50.10-4	0.030	13
R033-118	0.269	5.88.10-4	0.073	16
R034-131	0.636	1.39·10 ⁻³	0.020	10
R034-132	0.642	1.41·10 ⁻³	0.025	13
R034-133	0.531	1.16·10 ⁻³	0.031	16
R036-150	0.739	1.62·10 ⁻³	0.047	10
R036-151	0.635	1.39·10 ⁻³	0.134	13
R036-152	0.597	1.31.10-3	0.104	16
R037-166	0.678	1.48·10 ⁻³	0.142	10
R037-167	0.572	1.25·10 ⁻³	0.145	13
R037-168	0.382	8.37.10-4	0.052	16

-

•-

R038-182 0.608 1.33 · 10 ⁻⁴ 0.113 10 R038-183 0.493 1.08 · 10 ⁻⁴ 0.051 13 R038-184 0.440 9.62 · 10 ⁻⁴ 0.066 16 R040-199 0.563 1.23 · 10 ⁻⁴ 0.078 10 R040-200 0.353 7.72 · 10 ⁻⁴ 0.022 13 R040-201 0.353 7.72 · 10 ⁻⁴ 0.028 16 R041-218 0.208 4.55 · 10 ⁻⁴ 0.009 10 R041-220 0.174 3.80 · 10 ⁻⁴ 0.008 13 R041-220 0.174 3.80 · 10 ⁻⁴ 0.008 16 R061-271 0.717 1.57 · 10 ⁻⁵ 0.099 10 R061-274 0.361 7.89 · 10 ⁻⁴ 0.042 16 R062-286 0.471 1.03 · 10 ⁻⁵ 0.047 10 R062-286 0.471 1.03 · 10 ⁻⁵ 0.141 10 R063-303 0.739 1.62 · 10 ⁻⁵ 0.137 16 R063-304 0.531 1.27 · 10 ⁻⁵ 0.141 10 R063-305 0.533	Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R038-183 0.493 1.08 10^{-3} 0.113 13 R038-184 0.440 9.62 10^{-4} 0.066 16 R040-199 0.563 1.23 10^{-3} 0.078 10 R040-200 0.362 7.91 10^{-4} 0.022 13 R040-201 0.353 7.72 10^{-4} 0.022 16 R041-219 0.169 3.70 10^{-4} 0.008 13 R041-220 0.174 3.80 10^{-4} 0.006 16 R061-271 0.717 1.57 10^{-3} 0.099 10 R061-271 0.717 1.57 10^{-3} 0.049 19 R062-286 0.471 1.03 10^{-3} 0.047 10 R062-286 0.471 1.03 10^{-3} 0.047 10 R062-288 0.461 1.01 $\cdot 10^{-3}$ 0.043 16 R062-289 0.420 9.20 10^{-4} 0.116 10 R063-303 0.733 1.60 10^{-3} 0.141 10 R063-304 0.533 1.17 10^{-5} 0.137 16 R068-351	R038-182	0.608	1.33.10-3	0.113	10
R038-184 0.440 9.62:10 ⁻⁴ 0.051 15 R040-199 0.563 1.23:10 ⁻⁴ 0.078 10 R040-200 0.362 7.91:10 ⁻⁴ 0.022 13 R040-201 0.353 7.72:10 ⁻⁴ 0.009 10 R041-218 0.208 4.55:10 ⁻⁴ 0.009 10 R041-219 0.169 3.70:10 ⁻⁴ 0.008 13 R041-219 0.169 3.70:10 ⁻⁴ 0.008 16 R041-219 0.161 7.89:10 ⁻⁴ 0.062 16 R061-273 0.422 9.24:10 ⁻⁴ 0.062 16 R061-274 0.361 7.89:10 ⁻⁴ 0.049 19 R062-288 0.421 9.20:10 ⁻⁴ 0.022 19 R062-289 0.420 9.20:10 ⁻⁴ 0.022 19 R063-303 0.733 1.60:10 ⁻³ 0.116 10 R063-305 0.399 1.62:10 ⁻³ 0.111 10 R063-305 0.531 1.27:10 ⁻³ 0.141 10 R063-305 0.533 1.17:10 ⁻⁴	R038-183	0 493	1 08.10-3	0.051	12
R040-199 0.563 1.23·10 ⁻⁴ 0.022 13 R040-200 0.362 7.91·10 ⁻⁴ 0.022 13 R040-201 0.353 7.72·10 ⁻⁴ 0.028 16 R041-218 0.208 4.55·10 ⁻⁴ 0.009 10 R041-219 0.169 3.70·10 ⁻⁴ 0.008 13 R041-220 0.174 3.80·10 ⁻⁴ 0.006 16 R061-271 0.717 1.57·10 ⁻⁴ 0.099 10 R061-271 0.717 1.57·10 ⁻⁴ 0.0062 16 R061-271 0.717 1.57·10 ⁻⁴ 0.049 19 R062-286 0.471 1.03·10 ⁻⁴ 0.047 10 R062-288 0.461 1.01·10 ⁻⁵ 0.043 16 R062-289 0.420 9.20·10 ⁻⁴ 0.022 19 R063-305 0.739 1.62·10 ⁻³ 0.116 10 R063-306 0.581 1.27·10 ⁻³ 0.141 10 R068-351 0.722 1.58·10 ⁻⁴ <	R038-184	0.440	9.62.10-4	0.066	16
R040-199 0.563 $1.23 \cdot 10^{-3}$ 0.078 10 R040-200 0.362 $7.91 \cdot 10^{-4}$ 0.022 13 R040-201 0.353 $7.72 \cdot 10^{-4}$ 0.022 16 R041-219 0.169 $3.70 \cdot 10^{-4}$ 0.009 10 R041-220 0.174 $3.80 \cdot 10^{-4}$ 0.006 16 R061-271 0.717 $1.57 \cdot 10^{-3}$ 0.099 10 R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.062 16 R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.049 19 R062-286 0.471 $1.03 \cdot 10^{-3}$ 0.047 10 R062-288 0.420 $9.20 \cdot 10^{-4}$ 0.022 19 R063-303 0.733 $1.60 \cdot 10^{-3}$ 0.116 10 R063-304 0.581 $1.27 \cdot 10^{-5}$ 0.112 19 R063-305 0.739 $1.62 \cdot 10^{-3}$ 0.141 10 R063-306 0.581 $1.27 \cdot 10^{-5}$ 0.112 19 R068-351 0.722 $1.58 \cdot 10^{-3}$					
R040-200 0.362 $7.91\cdot10^{-4}$ 0.022 13 R040-201 0.353 $7.72\cdot10^{-4}$ 0.028 16 R041-218 0.208 $4.55\cdot10^{-4}$ 0.009 10 R041-219 0.169 $3.70\cdot10^{-4}$ 0.006 16 R041-220 0.174 $3.80\cdot10^{-4}$ 0.006 16 R061-271 0.717 $1.57\cdot10^{-3}$ 0.099 10 R061-274 0.361 $7.89\cdot10^{-4}$ 0.062 16 R061-274 0.361 $7.89\cdot10^{-4}$ 0.047 10 R062-286 0.471 $1.03\cdot10^{-5}$ 0.047 10 R062-288 0.461 $1.01\cdot10^{-3}$ 0.043 16 R062-289 0.420 $9.20\cdot10^{-4}$ 0.022 19 R063-303 0.733 $1.60\cdot10^{-3}$ 0.116 10 R063-305 0.739 $1.62\cdot10^{-3}$ 0.112 19 R068-351 0.722 $1.58\cdot10^{-4}$ 0.141 10 R068-354 0.504 $1.10\cdot10^{-3}$	R040-199	0.563	1.23.10-3	0.078	10
R040-201 0.353 $7.72\cdot10^{-4}$ 0.028 16 R041-218 0.208 $4.55\cdot10^{-4}$ 0.009 10 R041-219 0.169 $3.70\cdot10^{-4}$ 0.008 13 R041-220 0.174 $3.80\cdot10^{-4}$ 0.006 16 R061-271 0.717 $1.57\cdot10^{-3}$ 0.099 10 R061-274 0.361 $7.89\cdot10^{-4}$ 0.042 16 R061-274 0.361 $7.89\cdot10^{-4}$ 0.049 19 R062-286 0.471 $1.03\cdot10^{-3}$ 0.047 10 R062-289 0.420 $9.20\cdot10^{-4}$ 0.022 19 R063-303 0.733 $1.60\cdot10^{-3}$ 0.116 10 R063-306 0.581 $1.27\cdot10^{-3}$ 0.112 19 R068-351 0.722 $1.58\cdot10^{-4}$ 0.141 10 R068-353 0.533 $1.12\cdot10^{-3}$ 0.444 10 R076-367 0.248 $5.43\cdot10^{-4}$ 0.044 10 R076-367 0.248 $5.43\cdot10^{-4}$ 0.044	R040-200	0.362	7.91.10-4	0.022	13
R041-218 0.208 4.55·10 ⁻⁴ 0.009 10 R041-219 0.169 $3.70\cdot10^{-4}$ 0.008 13 R041-220 0.174 $3.80\cdot10^{-4}$ 0.006 16 R061-271 0.717 $1.57\cdot10^{-5}$ 0.099 10 R061-273 0.422 $9.24\cdot10^{-4}$ 0.062 16 R061-274 0.361 7.89·10 ⁻⁴ 0.049 19 R062-286 0.471 1.03·10 ⁻³ 0.047 10 R062-289 0.420 $9.20\cdot10^{-4}$ 0.043 16 R062-289 0.420 $9.20\cdot10^{-4}$ 0.043 16 R063-303 0.733 1.60·10 ⁻³ 0.116 10 R063-306 0.581 1.27·10 ⁻³ 0.112 19 R068-351 0.722 1.58·10 ⁻³ 0.141 10 R068-354 0.504 1.10·10 ⁻³ 0.044 16 R076-367 0.248 5.43·10 ⁻⁴ 0.044 13 R076-367 0.248 5.43·10 ⁻⁴ 0.044 16 R077-382 1.253 2	R040-201	0.353	7.72.10-4	0.028	16
R041-219 0.169 $3.70 \cdot 10^{-4}$ 0.008 13 R041-220 0.174 $3.80 \cdot 10^{-4}$ 0.008 13 R041-220 0.174 $3.80 \cdot 10^{-4}$ 0.006 16 R061-271 0.717 $1.57 \cdot 10^{-3}$ 0.099 10 R061-273 0.422 $9.24 \cdot 10^{-4}$ 0.062 16 R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.049 19 R062-288 0.461 $1.01 \cdot 10^{-3}$ 0.047 10 R062-289 0.420 $9.20 \cdot 10^{-4}$ 0.022 19 R063-303 0.733 $1.60 \cdot 10^{-3}$ 0.116 10 R063-305 0.739 $1.62 \cdot 10^{-3}$ 0.1112 19 R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10 R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10 R068-353 0.504 $1.10 \cdot 10^{-3}$ 0.044 10 R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 10 R077-382 1.253	R041-218	0 208	4 55-10-4	0.009	10
R041-220 0.174 $3.80 \cdot 10^{-4}$ 0.006 16 R061-271 0.717 $1.57 \cdot 10^{-3}$ 0.099 10 R061-273 0.422 $9.24 \cdot 10^{-4}$ 0.062 16 R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.049 19 R062-286 0.471 $1.03 \cdot 10^{-3}$ 0.047 10 R062-288 0.461 $1.01 \cdot 10^{-3}$ 0.043 16 R062-289 0.420 $9.20 \cdot 10^{-4}$ 0.022 19 R063-303 0.733 $1.60 \cdot 10^{-3}$ 0.116 10 R063-306 0.581 $1.27 \cdot 10^{-3}$ 0.112 19 R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10 R068-354 0.504 $1.10 \cdot 10^{-3}$ 0.044 16 R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 10 R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 13 R076-369 0.236 $5.15 \cdot 10^{-3}$ 0.490 10 R077-382 1.253 $2.65 \cdot 10^{-3}$	R041-219	0.169	3 70.10-4	0.009	10
ROM-22D 0.114 3.80 10 + 0.006 16 R061-271 0.717 1.57 10 ⁻³ 0.099 10 R061-273 0.422 9.24 10 ⁻⁴ 0.062 16 R061-274 0.361 7.89 10 ⁻⁴ 0.049 19 R062-286 0.471 1.03 10 ⁻³ 0.047 10 R062-289 0.420 9.20 10 ⁻⁴ 0.022 19 R063-303 0.733 1.60 10 ⁻³ 0.116 10 R063-305 0.739 1.62 10 ⁻³ 0.137 16 R063-306 0.581 1.27 10 ⁻³ 0.141 10 R068-351 0.722 1.58 10 ⁻³ 0.141 10 R068-354 0.504 1.10 10 ⁻³ 0.075 19 R076-367 0.248 5.43 10 ⁻⁴ 0.044 10 R076-369 0.236 5.15 10 ⁻⁴ 0.044 10 R077-382 1.253 2.65 10 ⁻³ 0.490 10 R077-384 1.253 2.74 10 ⁻³ 0.216 16 R078-399 0.739 1.62 10 ⁻³	D041_220	0.174	3.00.10-4	0.006	15
R061-271 0.717 $1.57 \cdot 10^{-3}$ 0.099 10 R061-273 0.422 $9.24 \cdot 10^{-4}$ 0.062 16 R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.049 19 R062-286 0.471 $1.03 \cdot 10^{-3}$ 0.047 10 R062-288 0.461 $1.01 \cdot 10^{-3}$ 0.043 16 R062-289 0.420 $9.20 \cdot 10^{-4}$ 0.022 19 R063-303 0.733 $1.60 \cdot 10^{-3}$ 0.116 10 R063-305 0.739 $1.62 \cdot 10^{-3}$ 0.137 16 R063-306 0.581 $1.27 \cdot 10^{-3}$ 0.141 10 R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10 R068-353 0.533 $1.17 \cdot 10^{-3}$ 0.064 16 R068-354 0.504 $1.10 \cdot 10^{-3}$ 0.075 19 R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 10 R076-369 0.236 $5.15 \cdot 10^{-4}$ 0.044 16 R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 10 R077-384 1.253 $2.74 \cdot 10^{-3}$ 0.216 16 R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.229 13 R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16 R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10 R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.039 10 R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 R081-431	1.041-220	0.174	5.00.10	0.000	10
R061-273 0.422 $9.24 \cdot 10^{-4}$ 0.062 16R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.049 19R062-286 0.471 $1.03 \cdot 10^{-3}$ 0.047 10R062-288 0.461 $1.01 \cdot 10^{-3}$ 0.043 16R062-289 0.420 $9.20 \cdot 10^{-4}$ 0.022 19R063-303 0.733 $1.60 \cdot 10^{-3}$ 0.116 10R063-305 0.739 $1.62 \cdot 10^{-3}$ 0.137 16R063-306 0.581 $1.27 \cdot 10^{-3}$ 0.112 19R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10R068-353 0.533 $1.17 \cdot 10^{-3}$ 0.064 16R068-354 0.504 $1.10 \cdot 10^{-3}$ 0.075 19R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 13R076-368 0.279 $6.09 \cdot 10^{-4}$ 0.044 13R076-369 0.236 $5.15 \cdot 10^{-4}$ 0.490 16R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 10R077-384 1.253 $2.74 \cdot 10^{-3}$ 0.216 16R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.229 13R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10R081-431 0.363 $7.95 \cdot 10^{-4}$ <	R061-271	0.717	1.57·10 ^{−3}	0.099	10
R061-274 0.361 $7.89 \cdot 10^{-4}$ 0.049 19R062-286 0.471 $1.03 \cdot 10^{-3}$ 0.047 10R062-288 0.461 $1.01 \cdot 10^{-3}$ 0.043 16R062-289 0.420 $9.20 \cdot 10^{-4}$ 0.022 19R063-303 0.733 $1.60 \cdot 10^{-3}$ 0.116 10R063-305 0.739 $1.62 \cdot 10^{-3}$ 0.137 16R063-306 0.581 $1.27 \cdot 10^{-3}$ 0.112 19R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10R068-353 0.533 $1.17 \cdot 10^{-3}$ 0.064 16R068-354 0.504 $1.10 \cdot 10^{-3}$ 0.075 19R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 13R076-369 0.236 $5.15 \cdot 10^{-4}$ 0.044 13R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 10R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 10R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.216 16R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.229 13R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.039 10R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10R081-431 0.363 $7.95 \cdot 10^{-4}$ <	R061-273	0.422	9.24.10-4	0.062	16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R061-274	0.361	7.89.10-4	0.049	19
R062-283 0.471 1.00^{-1} 0.043 16 R062-289 0.420 $9.20\cdot10^{-4}$ 0.022 19 R063-303 0.733 $1.60\cdot10^{-3}$ 0.116 10 R063-305 0.739 $1.62\cdot10^{-3}$ 0.137 16 R063-306 0.581 $1.27\cdot10^{-3}$ 0.112 19 R068-351 0.722 $1.58\cdot10^{-3}$ 0.141 10 R068-353 0.533 $1.17\cdot10^{-3}$ 0.064 16 R068-354 0.504 $1.10\cdot10^{-3}$ 0.075 19 R076-367 0.248 $5.43\cdot10^{-4}$ 0.044 10 R076-368 0.279 $6.09\cdot10^{-4}$ 0.044 13 R076-369 0.236 $5.15\cdot10^{-3}$ 0.490 10 R077-382 1.253 $2.65\cdot10^{-3}$ 0.490 10 R077-383 2.065 $4.52\cdot10^{-3}$ 0.216 16 R078-398 1.110 $2.43\cdot10^{-3}$ 0.419 10 R078-399 0.739 $1.62\cdot10^{-3}$ 0.229 <td< td=""><td>P062-286</td><td>0.471</td><td>1 03.10-3</td><td>0.047</td><td>10</td></td<>	P062-286	0.471	1 03.10-3	0.047	10
$R062-289$ 0.420 $9.20 \cdot 10^{-4}$ 0.022 19 $R063-303$ 0.733 $1.60 \cdot 10^{-3}$ 0.116 10 $R063-305$ 0.739 $1.62 \cdot 10^{-3}$ 0.137 16 $R063-306$ 0.581 $1.27 \cdot 10^{-3}$ 0.112 19 $R068-351$ 0.722 $1.58 \cdot 10^{-3}$ 0.141 10 $R068-353$ 0.533 $1.17 \cdot 10^{-3}$ 0.064 16 $R068-354$ 0.504 $1.10 \cdot 10^{-3}$ 0.075 19 $R076-367$ 0.248 $5.43 \cdot 10^{-4}$ 0.044 10 $R076-368$ 0.279 $6.09 \cdot 10^{-4}$ 0.044 13 $R076-369$ 0.236 $5.15 \cdot 10^{-3}$ 0.490 16 $R077-382$ 1.253 $2.65 \cdot 10^{-3}$ 0.490 10 $R077-384$ 1.253 $2.74 \cdot 10^{-3}$ 0.216 16 $R078-398$ 1.110 $2.43 \cdot 10^{-3}$ 0.419 10 $R078-398$ 1.110 $2.43 \cdot 10^{-3}$ 0.229 13 $R078-400$ 0.412 $9.02 \cdot 10^{-4}$ 0.080 16 $R080-415$ 0.553 $1.21 \cdot 10^{-3}$ 0.074 10 $R080-415$ 0.553 $1.21 \cdot 10^{-3}$ 0.074 10 $R081-430$ 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 $R081-431$ 0.363 $7.95 \cdot 10^{-4}$ 0.029 16	D062-200	0.4/1	1.03-10	0.047	10
$R052-239$ 0.420 $9.20 \cdot 10^{-1}$ 0.022 19 $R063-303$ 0.733 $1.60 \cdot 10^{-3}$ 0.116 10 $R063-305$ 0.739 $1.62 \cdot 10^{-3}$ 0.137 16 $R063-306$ 0.581 $1.27 \cdot 10^{-3}$ 0.112 19 $R068-351$ 0.722 $1.58 \cdot 10^{-3}$ 0.141 10 $R068-353$ 0.533 $1.17 \cdot 10^{-3}$ 0.064 16 $R068-354$ 0.504 $1.10 \cdot 10^{-3}$ 0.075 19 $R076-367$ 0.248 $5.43 \cdot 10^{-4}$ 0.044 10 $R076-367$ 0.248 $5.43 \cdot 10^{-4}$ 0.044 13 $R076-368$ 0.279 $6.09 \cdot 10^{-4}$ 0.044 13 $R076-369$ 0.236 $5.15 \cdot 10^{-4}$ 0.040 16 $R077-382$ 1.253 $2.65 \cdot 10^{-3}$ 0.490 10 $R077-382$ 1.253 $2.74 \cdot 10^{-3}$ 0.216 16 $R078-398$ 1.110 $2.43 \cdot 10^{-3}$ 0.419 10 $R078-398$ 1.110 $2.43 \cdot 10^{-3}$ 0.229 13 $R078-400$ 0.412 $9.02 \cdot 10^{-4}$ 0.080 16 $R080-415$ 0.553 $1.21 \cdot 10^{-3}$ 0.074 10 $R081-430$ 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 $R081-431$ 0.363 $7.95 \cdot 10^{-4}$ 0.029 16	D042-200	0.401	1.01.10 -	0.043	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RV02-207	0.420	9.20.10	0.022	19
R063-305 R063-306 0.739 0.581 $1.62 \cdot 10^{-3}$ $1.27 \cdot 10^{-3}$ 0.137 0.112 16 19 R068-351 R068-353 0.722 0.533 $1.58 \cdot 10^{-3}$ $1.17 \cdot 10^{-3}$ 0.064 16 0.064 16 16 $R068-354$ R076-367 R076-367 0.248 0.236 $5.43 \cdot 10^{-4}$ 0.044 0.044 13 $R076-369$ 10 $R076-369$ R077-382 R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 0.400 10 $R077-384$ R077-384 R077-384 1.253 $2.74 \cdot 10^{-3}$ 0.490 0.216 10 16 R078-398 R078-399 1.110 0.412 $2.43 \cdot 10^{-3}$ $9.02 \cdot 10^{-4}$ 0.419 0.080 10 16 R080-415 R080-416 0.553 0.345 $1.21 \cdot 10^{-3}$ 0.074 0.074 10 0.080 16 R081-430 R081-431 R081-432 0.492 0.297 $1.08 \cdot 10^{-3}$ 0.029 0.039 10	R063-303	0.733	1.60·10 ⁻³	0.116	10
R063-306 0.581 $1.27 \cdot 10^{-3}$ 0.112 19R068-351 0.722 $1.58 \cdot 10^{-3}$ 0.141 10R068-353 0.533 $1.17 \cdot 10^{-3}$ 0.064 16R068-354 0.504 $1.10 \cdot 10^{-3}$ 0.075 19R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 10R076-368 0.279 $6.09 \cdot 10^{-4}$ 0.044 13R076-369 0.236 $5.15 \cdot 10^{-4}$ 0.040 16R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.991 13R077-384 1.253 $2.74 \cdot 10^{-3}$ 0.216 16R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.419 10R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.229 13R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13R080-417 0.308 $6.74 \cdot 10^{-4}$ 0.044 16R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.029 16	R063-305	0.739	1.62·10 ⁻³	0.137	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R063-306	0.581	1.27·10 ⁻³	0.112	19
R068-353 0.722 $1.36^{1}10^{-3}$ 0.741 10 R068-353 0.533 $1.17\cdot10^{-3}$ 0.064 16 R068-354 0.504 $1.10\cdot10^{-3}$ 0.075 19 R076-367 0.248 $5.43\cdot10^{-4}$ 0.044 10 R076-368 0.279 $6.09\cdot10^{-4}$ 0.044 13 R076-369 0.236 $5.15\cdot10^{-4}$ 0.040 16 R077-382 1.253 $2.65\cdot10^{-3}$ 0.990 10 R077-383 2.065 $4.52\cdot10^{-3}$ 0.991 13 R077-384 1.253 $2.74\cdot10^{-3}$ 0.216 16 R078-398 1.110 $2.43\cdot10^{-3}$ 0.419 10 R078-399 0.739 $1.62\cdot10^{-3}$ 0.229 13 R078-400 0.412 $9.02\cdot10^{-4}$ 0.080 16 R080-415 0.553 $1.21\cdot10^{-3}$ 0.074 10 R080-417 0.308 $6.74\cdot10^{-4}$ 0.044 16 R081-430 0.492 $1.08\cdot10^{-3}$ 0.039 10 R081-431 0.363 $7.95\cdot10^{-4}$ 0.054 13 R081-432 0.297 $6.50\cdot10^{-4}$ 0.029 16	R068-351	0 722	1 58.10-3	0 141	10
R000-033 0.333 1.1710^{-3} 0.004 16 R068-354 0.504 $1.10\cdot10^{-3}$ 0.075 19 R076-367 0.248 $5.43\cdot10^{-4}$ 0.044 10 R076-368 0.279 $6.09\cdot10^{-4}$ 0.044 13 R076-369 0.236 $5.15\cdot10^{-4}$ 0.040 16 R077-382 1.253 $2.65\cdot10^{-3}$ 0.490 10 R077-383 2.065 $4.52\cdot10^{-3}$ 0.991 13 R077-384 1.253 $2.74\cdot10^{-3}$ 0.216 16 R078-398 1.110 $2.43\cdot10^{-3}$ 0.419 10 R078-399 0.739 $1.62\cdot10^{-3}$ 0.229 13 R078-400 0.412 $9.02\cdot10^{-4}$ 0.080 16 R080-415 0.553 $1.21\cdot10^{-3}$ 0.074 10 R080-416 0.345 $7.56\cdot10^{-4}$ 0.021 13 R080-417 0.308 $6.74\cdot10^{-4}$ 0.044 16 R081-430 0.492 $1.08\cdot10^{-3}$ 0.039 10 R081-431 0.363 $7.95\cdot10^{-4}$ 0.029 16	D068_353	0.533	1.17.10-3	0.141	10
R003-354 0.504 $1.10^{-10^{-1}}$ 0.073 19R076-367 0.248 $5.43 \cdot 10^{-4}$ 0.044 10R076-368 0.279 $6.09 \cdot 10^{-4}$ 0.044 13R076-369 0.236 $5.15 \cdot 10^{-4}$ 0.040 16R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 10R077-383 2.065 $4.52 \cdot 10^{-3}$ 0.991 13R077-384 1.253 $2.74 \cdot 10^{-3}$ 0.216 16R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.419 10R078-399 0.739 $1.62 \cdot 10^{-3}$ 0.229 13R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13R080-417 0.308 $6.74 \cdot 10^{-4}$ 0.044 16R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.029 16	D068-355	0.555	1.10.10-3	0.004	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000-354	0.504	1.10.10	0.075	19
R076-368 R076-369 0.279 0.236 $6.09 \cdot 10^{-4}$ $5.15 \cdot 10^{-4}$ 0.044 0.040 13 16 R077-382 R077-383 1.253 2.065 $2.65 \cdot 10^{-3}$ $4.52 \cdot 10^{-3}$ 0.490 0.991 10 13 $R077-384$ R077-384 R078-398 1.253 1.110 $2.43 \cdot 10^{-3}$ 0.216 0.216 16 R078-398 R078-399 1.110 0.412 $2.43 \cdot 10^{-3}$ $9.02 \cdot 10^{-4}$ 0.419 0.080 R078-400 R080-415 0.553 0.553 $1.21 \cdot 10^{-3}$ 0.021 0.074 10 10 $R080-416$ 0.345 $7.56 \cdot 10^{-4}$ 0.021 10 13 $R080-417$ R081-430 R081-431 0.492 0.363 $1.08 \cdot 10^{-3}$ $7.95 \cdot 10^{-4}$ 0.039 0.029 10 $R081-432$	R076-367	0.248	5.43.10-4	0.044	10
R076-369 0.236 $5.15 \cdot 10^{-4}$ 0.040 16 R077-382 1.253 $2.65 \cdot 10^{-3}$ 0.490 10 R077-383 2.065 $4.52 \cdot 10^{-3}$ 0.991 13 R077-384 1.253 $2.74 \cdot 10^{-3}$ 0.216 16 R078-398 1.110 $2.43 \cdot 10^{-3}$ 0.216 16 R078-399 0.739 $1.62 \cdot 10^{-3}$ 0.229 13 R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16 R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10 R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13 R080-417 0.308 $6.74 \cdot 10^{-4}$ 0.044 16 R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.029 16	R076-368	0.279	6.09-10-4	0.044	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R076-369	0.236	5.15.10-4	0.040	16
$R077-382$ 1.253 2.0510^{-3} 0.490 10 $R077-383$ 2.065 $4.52\cdot10^{-3}$ 0.991 13 $R077-384$ 1.253 $2.74\cdot10^{-3}$ 0.216 16 $R078-398$ 1.110 $2.43\cdot10^{-3}$ 0.419 10 $R078-399$ 0.739 $1.62\cdot10^{-3}$ 0.229 13 $R078-400$ 0.412 $9.02\cdot10^{-4}$ 0.080 16 $R080-415$ 0.553 $1.21\cdot10^{-3}$ 0.074 10 $R080-416$ 0.345 $7.56\cdot10^{-4}$ 0.021 13 $R080-417$ 0.308 $6.74\cdot10^{-4}$ 0.044 16 $R081-430$ 0.492 $1.08\cdot10^{-3}$ 0.039 10 $R081-431$ 0.363 $7.95\cdot10^{-4}$ 0.029 16	R077-382	1 253	2 65.10-3	0.490	10
$R077-383$ 2.003 $4.32\cdot10^{-1}$ 0.991 13 $R077-384$ 1.253 $2.74\cdot10^{-3}$ 0.216 16 $R078-398$ 1.110 $2.43\cdot10^{-3}$ 0.419 10 $R078-399$ 0.739 $1.62\cdot10^{-3}$ 0.229 13 $R078-400$ 0.412 $9.02\cdot10^{-4}$ 0.080 16 $R080-415$ 0.553 $1.21\cdot10^{-3}$ 0.074 10 $R080-416$ 0.345 $7.56\cdot10^{-4}$ 0.021 13 $R080-417$ 0.308 $6.74\cdot10^{-4}$ 0.044 16 $R081-430$ 0.492 $1.08\cdot10^{-3}$ 0.039 10 $R081-431$ 0.363 $7.95\cdot10^{-4}$ 0.029 16	D077_383	2.065	4.52.10-8	0.001	10
$R077-334$ 1.223 $2.74\cdot10^{-1}$ 0.216 16 $R078-398$ 1.110 $2.43\cdot10^{-3}$ 0.419 10 $R078-399$ 0.739 $1.62\cdot10^{-3}$ 0.229 13 $R078-400$ 0.412 $9.02\cdot10^{-4}$ 0.080 16 $R080-415$ 0.553 $1.21\cdot10^{-3}$ 0.074 10 $R080-416$ 0.345 $7.56\cdot10^{-4}$ 0.021 13 $R080-417$ 0.308 $6.74\cdot10^{-4}$ 0.044 16 $R081-430$ 0.492 $1.08\cdot10^{-3}$ 0.039 10 $R081-431$ 0.363 $7.95\cdot10^{-4}$ 0.054 13 $R081-432$ 0.297 $6.50\cdot10^{-4}$ 0.029 16	D077_394	2.005	4.32·10 -3	0.991	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RU/7-304	1.235	2.74.10	0.216	16
R078-399 R078-400 0.739 0.412 $1.62 \cdot 10^{-3}$ $9.02 \cdot 10^{-4}$ 0.229 0.080 13 16 R080-415 R080-416 0.553 0.345 $1.21 \cdot 10^{-3}$ $7.56 \cdot 10^{-4}$ 0.074 0.021 10 13 16 R080-417 R081-430 0.492 0.363 $1.08 \cdot 10^{-3}$ $7.95 \cdot 10^{-4}$ 0.039 0.054 10 13 13 $R081-432$ R081-432 R081-432 0.297 0.029 $6.50 \cdot 10^{-4}$ 0.029	R078-398	1.110	2.43·10 ⁻³	0.419	10
R078-400 0.412 $9.02 \cdot 10^{-4}$ 0.080 16R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13R080-417 0.308 $6.74 \cdot 10^{-4}$ 0.044 16R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.054 13R081-432 0.297 $6.50 \cdot 10^{-4}$ 0.029 16	R078-399	0.739	1.62.10-3	0.229	13
R080-415 0.553 $1.21 \cdot 10^{-3}$ 0.074 10 R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13 R080-417 0.308 $6.74 \cdot 10^{-4}$ 0.044 16 R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.054 13 R081-432 0.297 $6.50 \cdot 10^{-4}$ 0.029 16	R078-400	0.412	9.02.10-4	0.080	16
R080-416 0.345 $7.56 \cdot 10^{-4}$ 0.021 13 R080-417 0.308 $6.74 \cdot 10^{-4}$ 0.044 16 R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.054 13 R081-432 0.297 $6.50 \cdot 10^{-4}$ 0.029 16	R080-415	0 553	1 21.10-3	0.074	10
R080-417 0.343 7.5010^{-1} 0.021 13 R081-430 0.492 $1.08 \cdot 10^{-3}$ 0.039 10 R081-431 0.363 $7.95 \cdot 10^{-4}$ 0.054 13 R081-432 0.297 $6.50 \cdot 10^{-4}$ 0.029 16	DUSU 712	0.333	7 \$4.10-4	0.074	10
R081-430 0.492 1.08·10 ⁻³ 0.039 10 R081-431 0.363 7.95·10 ⁻⁴ 0.054 13 R081-432 0.297 6.50·10 ⁻⁴ 0.029 16	D000 117	0.209	1.JO'IU '	0.021	13
R081-4300.4921.08·10-30.03910R081-4310.3637.95·10-40.05413R081-4320.2976.50·10-40.02916	KV0V-41/	0.306	0.74.10	0.044	16
R081-4310.3637.95.10-40.05413R081-4320.2976.50.10-40.02916	R081-430	0.492	1.08·10 ⁻³	0.039	10
R081-432 0.297 6.50·10 ⁻⁴ 0.029 16	R081-431	0.363	7.95.10-4	0.054	13
	R081-432	0.297	6.50-10-4	0.029	16

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R082-445	1.575	3.45.10-3	0.856	10
R082-446	0.709	1 55-10-3	0.138	13
R082-447	0.449	9.82.10-4	0.070	16
R086-460	0.233	5.09.10-4	0.007	10
R086-461	0.242	5.30.10-4	0.016	13
R086-462	0.220	4.81.10-4	0.010	16
R087-475	0.454	9 93 10-4	0.057	10
P087_476	0.277	6 06.10-4	0.037	10
D097 477	0.277	4.56.10-4	0.046	15
RU8/-4//	0.209	4.50.10	0.011	16
R088-491	0.894	1.96·10 ⁻³	0.200	10
R088-492	0.597	1.31·10 ⁻³	0.118	13
R088-493	0.480	1.05·10 ⁻³	0.047	16
D001_507	0 975	2 12.10-3	0 121	10
D001 609	0.575	2.13.10	0.121	10
R091-508	0.310	1.12.10-	0.135	13
R091-509	0.387	8.4/-10-	0.055	16
R096-546	0.574	1.26.10-3	0.148	10
R096-547	0.321	7.03.10-4	0.052	13
R096-548	0.242	5.30.10-4	0.016	16
D007 562	0 609	1 22 10-3	0.070	10
R097-303	0.008	1.33.10	0.072	10
R097-564	0.413	9.04.10	0.043	13
R097-565	0.279	6.10.10-4	0.040	16
R098-579	0.392	8.58.10-4	0.086	10
R098-582	0.208	4.55.10-4	0.007	19
R098-583	0.208	4.54.10-4	0.007	22
	0.200		0.007	
R092-523	3.043	6.66·10 ⁻³	1.205	10
R092-524	1.170	2.56·10 ⁻³	0.942	13
R092-525	0.450	9.84.10-4	0.056	16
R099-594	0 446	9 76.10-4	0.044	10
P099_596	0.220	5 01.10-4	0.017	10
D000 507	0.227	5.05.10-4	0.012	10
KU77-J77	0.231	5.05.10-	0.008	19
R101-612	1.079	2.36·10 ⁻³	0.215	10
R101-614	0.332	7.27.10-4	0.038	16
R101-615	0.323	7.07.10-4	0.032	19
R102-628	0.631	1 38.10-3	0 130	10
R102-630	0.350	7 65.10	0.130	10
D102-030	0.330	7.03.10	0.040	10
R102-031	0.303	1.99.10_	0.021	19

•

28

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R103-644	0.273	5.98.10-4	0.023	10
R103-645	0.282	6 17.10-4	0.043	13
R103-646	0.213	4.67.10-4	0.016	16
	0.551	1 21 10-8	0.100	
R110-664	0.551	1.21.10-	0.123	10
R110-665	0.398	8.71.10-4	0.084	13
R110-666	0.319	6.97 ·10 ⁴	0.064	16
R111-679	0.338	7.40.10-4	0.040	10
R111-680	0.232	5.07.10-4	0.022	13
R111-681	0.242	5.30-10-4	0.025	16
R112-693	0 712	1.56.10-3	0 240	10
P112-694	0.504	1 10.10-3	0.240	10
D112-074	0.304	1.10-10	0.070	15
R112-095	0.478	1.05.10 *	0.072	16
R115-714	0.517	1.13·10 ⁻³	0.149	10
R115-715	0.388	8.50.10-4	0.107	13
R115-716	0.332	7.27.10-4	0.070	16
R116-730	0.268	5.87.10-4	0.045	10
R116-731	0.236	5 17.10-4	0.015	13
R116-732	0.251	5.49.10-4	0.047	16
D117 744	0.100	4 17 10-4	0.000	10
R117-744	0.190	4.17.10-	0.025	10
R117-745	0.152	3.32.10-	0.038	13
R117-746	0.262	5.74.10-4	0.041	16
R118-759	0.254	5.55.10-4	0.066	10
R118-760	0.214	4.68 10-4	0.028	13
R118-761	0.181	3.96.10-4	0.030	16
R122-775	0.460	1.01.10-3	0.048	10
R122-777	0.252	5 50.10-4	0.030	16
R122-778	0.190	4.16.10-4	0.021	19
D102 700	0.962	1 07 10-3	0.044	10
R125-792	0.852	1.8/.10-5	0.344	10
R123-794	0.015	1.35.10-	0.065	16
R123-795	0.483	1.06.10-3	0.094	19
R124-808	0.237	5.18.10-4	0.032	10
R124-810	0.203	4.44.10-4	0.021	16
R124-811	0.163	3.57.10-4	0.034	19
R127-823	0.584	1.28.10-3	0.168	10
R127-825	0.179	3 93.10-4	0.017	16
R127-826	0.169	3 70.10-4	0.017	10
11161-060	0.107	5.70.10	0.010	17

 Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R128-839	0.497	1 09-10-3	0.013	10
R128-847	0.170	3 72.10-4	0.013	24
R128-848	0.173	3 70.10-4	0.017	24
N120-040	0.175	5.75.10	0.011	37
R129-858	0.269	5.88.10-4	0.045	10
R129-860	0.213	4.67.10-4	0.009	16
R129-861	0.199	4.36-10-4	0.007	19
R132-875	0.521	1.14.10-3	0.075	10
R132-877	0.348	7 61.10-4	0.073	16
R132_878	0 353	7 73.10-4	0.002	10
102 0/0	0.000	1.15 10	0.000	19
R133-890	0.243	5.33.10-4	0.032	10
R133-892	0.192	4.21.10-4	0.008	16
R133-893	0.194	4.24.10-4	0.014	19
R134-906	0.531	1 16.10-3	0 120	10
R134-908	0.225	4 93.10-4	0.120	16
R134_909	0.162	3 55.10-4	0.033	10
1(13+-)0)	0.102	5.55-10	0.010	19
R136-921	0.196	4.29.10-4	0.014	10
R136-923	0.136	2.98.10-4	0.023	16
R136-924	0.147	3.23.10-4	0.030	19
R137-935	0.217	4 74.10-4	0.016	10
R137-937	0.130	2 85.10-4	0.010	16
R137-938	0.119	2.65 10	0.025	10
1(157-556	0.117	2.00.10	0.024	19
R140-965	0.457	9.99.10-4	0.033	10
R140-966	0.257	5.63.10-4	0.028	13
R140-967	0.228	5.00.10-4	0.008	16
				10
R141-980	0.066	1.44.10-4	0.026	10
R141-982	0.201	4.40.10-4	0.019	16
R141-983	0.183	4.00.10-4	0.030	19
R142-996	0.471	1.03.10-3	0.078	10
R142-998	0.208	4.55.10-4	0.013	16
R142-999	0.213	4.66.10-4	0.014	19
D150 000	1 /01	2 76 10-8	1.057	10
D150 020	0.004	J.20·10 - J.10.10-3	1.057	IU IC
R130-022	0.770	2.18.10	0.428	16
K150-023	0.313	1.12.10-3	0.117	19
R151-037	2.836	6.20·10 ⁻³	1.248	10
R151-039	0.427	9.34.10-4	0.056	16
R151-040	0.390	8.53.10-4	0.042	19

•

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R152-052	0.510	1.12.10-3	0 108	10
R152-054	0.223	4 87.10-4	0.100	16
R152-054	0.210	4 59.10-4	0.010	10
1(152-055	0.210	4.55.10	0.008	19
R155-072	0.493	1.08·10 ⁻³	0.064	10
R155-074	0.315	6.89-10-4	0.051	16
R155-075	0.326	7.14.10-4	0.056	19
R156-087	0.483	1.06.10-3	0 039	10
R156-089	0 491	1.07.10-3	0.069	16
R156-090	0 504	1.10.10-3	0.000	10
11130-070	0.504	1.10/10	0.099	19
R157-102	0.678	1.48·10 ⁻³	0.118	10
R157-106	0.342	7.48.10-4	0.045	23
R157-107	0.342	7.49.10-4	0.069	26
R158-118	0.366	8.00.10-4	0.045	10
R158-120	0.220	4 82.10-4	0.045	16
R158-121	0.226	4 93.10-4	0.017	10
	0.220	4.75 10	0.024	17
R160-138	0.463	1.01.10-3	0.051	10
R160-140	0.408	8.92.10-4	0.042	16
R160-141	0.321	7.01.10-4	0.032	19
R161-154	0.240	5.25.10-4	0.012	10
R161-156	0.228	4 99.10-4	0.012	16
R161-157	0.216	4.72.10-4	0.008	10
	0.210	4.72 10	0.007	17
R162-170	0.504	1.10·10 ⁻³	0.056	10
R162-171	0.549	1.20.10-3	0.069	13
R162-172	0.325	7.12.10-4	0.050	16
			0.050	10
R164-184	0.449	9.82.10-4	0.042	10
R164-186	0.197	4.30.10-4	0.016	16
R164-187	0.115	2.53.10-4	0.017	19
R165-199	0.331	7.24.10-4	0 049	10
R165-201	0.186	4 06.10-4	0.021	16
R165-202	0.107	2.34.10-4	0.021	10
		2.0 1 10	0.021	17
R168-214	1.628	3.56·10 ⁻³	0.669	10
R168-215	2.045	4.48·10 ⁻³	1.381	13
R168-216	1.683	3.68·10 ⁻³	1.008	16
R169-230	0.675	1 48-10-3	0.030	´ 10
R169-231	1 399	3 06.10-3	0.000	10
R160_222	0.878	1 00.10-3	0.030	15
12107-606	0.070	1.74.10 -	U.170	10

·

	DASH-8	2-D
t	[seconds]	

 Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds
R170-244	0.890	1.95·10 ⁻³	0 233	10
R170-245	0.447	9.77.10-4	0.051	13
R170-246	0.420	9.19.10-4	0.026	16
D172_260	0.485	1.06.10-3	0.017	10
D172-200	0.705	1.00-10-3	0.017	10
R1/2-201	0.622	1.80.10-3	0.111	13
R1/2-202	0.800	1.88.10-*	0.136	16
R174-298	0.431	9.42.10-4	0.041	10
R174-299	0.470	1.03·10 ⁻³	0.074	13
R174-300	0.421	9.22.10-4	0.040	16
R175-313	1.001	2 19.10-3	0 140	10
R175-314	0.674	1 47.10-3	0.140	10
D175_315	0.074	1.11.10-3	0.040	15
K175-515	0.505	1.11.10	0.104	10
R177-329	0.416	9.11.10-4	0.042	10
R177-330	0.482	1.05.10-3	0.070	13
R177-331	0.415	9.07.10-4	0.052	16
R178-345	0.269	5.88.10-4	0.039	10
R178-346	0.273	5.97.10-4	0.039	13
R178-347	0.302	6.61.10-4	0.054	16
D170_364	0.450	0.95.10-4	0.077	10
D170 265	0.40	9.03·10 ·	0.077	10
D170 266	0.207		0.055	13
K1/9-300	0.188	4.11.10	0.019	16
R180-379	0.215	4.70.10-4	0.016	10
R180-380	0.151	3.29.10-4	0.020	13
R180-381	0.110	2.40.10-4	0.027	16
R186-404	0.746	1.63.10-8	0 164	10
R186-406	1.146	2 51.10-3	0.157	16
R186-407	1.114	2.44.10-3	0.103	19
D197 400	0 271	5 02 10 -1	0.000	10
D107 400	0.271	3.93.10-	0.088	10
R10/-422	0.302	7.92.10	0.043	16
K187-423	0.319	0.98.10	0.051	19
R188-435	0.854	1.87·10 ⁻³	0.186	10
R188-437	0.739	1.62·10 ⁻³	0.137	16
R188-438	0.711	1.56·10 ⁻³	0.100	19
R191-452	0.228	5.00-10-4	0.026	10
R191-454	0.224	4 91.10-4	0.020	16
R191_455	0 195	4.91-10	0.035	10
12121-122	V.17J	4.2010	0.027	19

Rı	in-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
RI	92-467	0.070	1.53.10-4	0.011	10
RI	92-469	0.059	1.29.10-4	0.010	16
RI	92-470	0.006	1.39.10-5	0.008	19
RI	93-482	0 303	6 64 10-4	0.040	10
DI	03-402	0.370	8 10.10-4	0.040	12
RI	93-484	0.306	6.69.10-4	0.042	15
RI	96-498	0.428	9.36.10-4	0.037	10
R1	96-499	0.644	1.41·10 ⁻³	0.096	13
RI	96-500	0.547	1.20.10-3	0.092	16
R2	00-513	0.517	1.13.10-3	0.039	10
R2	00-514	0.546	1.20.10-3	0.059	13
R2	00-515	0.612	1.34.10-3	0.053	16
				0.050	10
R2	01-528	0.475	1.04.10-3	0.092	10
R2	01-529	0.458	1.00.10-3	0.074	13
R2	01-530	0.514	1.13·10 ⁻³	0.120	16
R2	02-543	1 165	2 55-10 - 8	0 337	10
R2	02-544	1.050	2 30.10-3	0.007	12
P2	02-545	0.675	$1.48 \cdot 10^{-3}$	0.221	15
I\2	02-343	0.075	1.40.10	0.075	10
R2	05558	0.205	4.49.10-4	0.014	10
R2	05-559	0.232	5.08.10-4	0.032	13
R2	05-560	0.191	4.18.10-4	0.037	16
R2	06-573	0.012	2.66.10-5	0.007	10
R2	06-574	0.006	1.23.10-5	0.008	13
R2	06-575	0.074	1.63.10-4	0.043	16
R2	07-588	0.330	7.21.10-4	0.026	10
R2	07-589	0.324	7.10-10-4	0.035	13
R2	07-590	0.323	7.07.10-4	0.049	16
R2	10-603	0 474	1.04.10-3	0.034	10
R2	10_604	0.565	1 24.10-3	0.054	10
D2	10-605	0.305	1.24 10	0.007	15
112	10-005	0.760	1.7210	0.107	10
R2	20-627	0.511	1.12·10 ⁻³	0.054	10
R2	20-628	0.518	1.13·10 ⁻³	0.067	13
R2	20-629	0.414	9.06.10-4	0.044	16
R2	21-652	1.067	2.34.10-3	0.199	10
R2	21-653	0.703	1.54.10-3	0 137	13
R2	21-654	0.469	1.03.10-3	0.070	16
			1.00 10	V.V/V	10

	DA	SH-8	2-D
--	----	------	-----

Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
R222-667	0.653	1.43·10 ⁻³	0.033	10
R222-668	1.084	2.37.10-3	0 283	13
R222-669	0.734	1.61.10-3	0.185	16
	0.701	1 20 10 1		
R225-682	0.791	1./3.10-3	0.133	10
R225-683	0.686	1.50-10-3	0.089	13
R225-684	0.490	1.07·10 ⁻³	0.080	16
R226-702	2.764	6.05·10 ⁻³	1.149	10
R226-703	3.528	7.72·10 ⁻³	0.996	13
R226-704	1.444	3.16.10-3	1.039	16
P227_722	1 209	2 65.10-3	0 207	10
D007 702	1.207	2.05 10	0.307	10
R227-723	1.230	2.73.10	0.155	13
R227-724	1.555	3.40.10-3	0.118	16
R226-702	2.764	6.05·10 ⁻³	1.149	10
R226-703	3.528	7.72·10 ⁻³	0.996	13
R226-704	1.444	3.16·10 ⁻³	1.039	16
R230-737	0.755	1.65.10-8	0 125	10
R230-739	1.025	2 24.10-3	0 174	16
R230-740	0 904	$1.08.10^{-3}$	0.174	10
1200-140	0.704	1.76 10	0.129	17
R231-752	0.480	1.05.10-3	0.061	10
R231-754	0.495	1.08·10 ⁻³	0.069	16
R231-755	0.347	7.60.10-4	0.051	19
		_		
R234-767	0.549	1.20.10-3	0.074	10
R234-768	0.674	1.48·10 ⁻³	0.048	13
R234-769	0.602	1.32·10 ⁻³	0.059	16
R235-782	0.643	1.41.10-3	0.104	10
R235-783	0.708	1 55-10-3	0 127	13
R235-784	0.526	1 15.10-3	0.027	15
	0.020	1.15 10	0.072	10
R236-797	0.305	6.68.10-4	0.052	10
R236-798	0.414	9.05.10-4	0.020	13
R236-799	0.447	9.79-10-4	0.019	16
R239-814	2.356	5 15.10-3	1 250	10
R239-815	3 852	8 42.10-3	0 552	12
R730_R16	3 556	7 79.10-3	0.333	13
1/207-010	3.330	1.10.10	V.044	10
R240-830	0.477	1.04·10 ⁻³	0.045	10
R240-831	0.612	1.34·10 ⁻³	0.075	13
R240-832	0.505	1.11·10 ⁻³	0.093	16

Run-Frame	μ [mm]	µ/length	σ [mm]	t [seconds]
R241-853	0.518	1.13.10-3	0.090	10
R241-854	0.510	1.12.10-3	0.058	13
R241-855	0.660	1.44.10-3	0.095	16
R241-868	0 691	1 51.10-3	0.031	10
R241_869	0.943	2 06.10-3	0.001	12
R241-870	1.322	2.89·10 ⁻³	0.341	16
R745-883	2 813	6 15.10-3	1 366	10
P245-884	1 490	3 24.10-3	0 775	10
D245-885	0 872	1 91.10-3	0.775	15
11240-000	0.872	1.71*10	0.239	10
R246-902	0.715	1.56·10 ⁻³	0.314	10
R246-903	0.887	1.94·10 ⁻³	0.098	13
R246-904	0.778	1.70·10 ⁻³	0.134	16
R249-937	0.521	1.14.10-3	0.135	10
R249-938	0.557	1.22.10-3	0.084	13
R249-939	0.547	1.20.10-3	0.081	16
D250-052	0 568	1 24.10-3	0.055	10
D250-052	0.500	1.2410	0.033	10
D250 054	0.565	1.20.10	0.076	13
R230-734	0.024	1.30.10	0.066	16
R251-968	0.573	1.25·10 ⁻³	0.091	10
R251-969	0.702	1.54.10-3	0.103	13
R251-970	0.595	1.30.10-3	0.054	16
			0.054	10
R283-008	0.452	9.89.10-4	0.025	10
R283-009	0.510	1.12·10 ⁻³	0.084	13
R283-010	0.460	1.01·10 ⁻³	0.031	16
R284-033	1.438	3.15·10 ⁻³	0.213	10
R284-034	1.466	3.21·10 ⁻³	0.779	13
R284-035	0.858	1.88.10-3	0.211	16
R287-051	0.459	1.00·10 ⁻³	0.023	10
R287-052	0.524	1 15.10-3	0.081	13
R287-053	0.415	9.09.10-4	0.038	16
R297_065	0.479	1 05.10-3	0.024	10
D207_066	0.475	1.03-10	0.024	10
D107 AL7	0.030	1.30'10 -	0.000	15
K27/-00/	0.020	1.30.10-	0.076	10
R298-080	1.437	3.14.10-3	0.636	10
R298-081	2.615	5.72.10-3	0.936	13
R298-082	2.320	5.08·10-3	1.007	16
				-

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R299-093	0.523	1.14.10-3	0.023	4
R299-094	0.511	1.12.10-3	0.019	7
R299-095	0.512	1.12.10-3	0.062	10
R305-128	1.129	2.47·10 ⁻³	0.664	10
R305-129	3.347	7.32.10-3	0.988	13
R305-130	2.725	5.96·10 ⁻³	1.029	16
R310-143	0.544	1.19·10 ⁻³	0.076	10
R310-144	0.498	1.09·10 ⁻³	0.067	13
R310-145	0.490	1.07.10-3	0.077	16
R311-159	3.305	7.23·10 ⁻³	0.673	10
R311-161	0.897	1.96-10-3	0 302	16
R311-162	0.682	1.49.10-3	0.136	19
R312-177	0.906	1.98.10-3	0.313	10
R312-178	0.666	1 46.10-3	0.167	13
R312-179	0.646	1 41.10-3	0.107	16
1012-117	0.040	1.41 10	0.055	10
R317-192	0.583	1.28·10 ⁻³	0.067	10
R317-193	0.769	1.68·10 ⁻³	0.158	13
R317-194	0.815	1.78·10 ⁻³	0.142	16
R318-207	1.100	2.41·10 ⁻³	0.347	10
R318-208	1.591	3.48·10 ⁻³	0.998	13
R318-209	2.479	5.42·10 ⁻³	1.175	16
R321-224	0.509	1.11·10 ⁻³	0.085	10
R321-225	0.713	1.56.10-3	0.160	13
R321-226	0.587	1.28.10-3	0.079	16
R322-239	0.698	1.53·10 ⁻³	0.126	10
R322-240	1.258	2.75·10 ⁻³	0.652	13
R322-241	1.686	3.69.10-3	0.983	16
R323-255	0.906	1.98·10 ⁻³	0.282	10
R323-256	1.029	2.25.10-3	0.132	13
R323-257	1.033	2.26·10-3	0.149	16
R329-272	0.641	1.40·10 ⁻³	0.024	10
R329-273	1.126	2.46.10-3	0.452	13
R329-274	1.554	3.40.10-3	0.381	16
R330-285	0.708	1.55.10-3	0.042	10
R330-286	0.756	1.65.10-3	0.092	13
R330-287	0.833	1 82.10-3	0.072	16
	0.000	1.02.10	0.071	10

-

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R333-304	0.456	9 99 10-4	0.022	10
R333-305	0 573	1 25.10-3	0.107	13
R333-306	0.727	1.59·10 ⁻³	0.157	16
R335-339	0.524	1.15·10 ⁻³	0.073	10
R335-340	0.572	1.25.10-3	0.104	13
R335-341	1.232	2.70·10 ⁻³	0.362	16
R340-355	0 387	8 47.10-4	0.047	10
D340-356	0.354	7 75.10-4	0.047	10
D240 257	0.334	0.24.10-4	0.004	15
K340-337	0.422	9.24.10	0.094	10
R341-374	0.193	4.22.10-4	0.009	10
R341-375	0.194	4.24.10-4	0.014	13
R341-376	0.206	4.51.10-4	0.012	16
D342-390	0.682	1 40.10-3	0.042	10
D2/12 201	0.002	1.75.10-3	0.042	10
D242-371	0.015	1.33.10	0.105	15
K342-392	0.035	1.43.10	0.134	16
R347-432	0.452	9.89.10-4	0.024	10
R347-433	0.451	9.87.10-4	0.032	13
R347-434	0.475	1.04·10 ⁻³	0.052	16
D348_447	0 173	3 70.10-4	0.014	10
D2/0 //0	0.175	2 69.10-4	0.014	10
D240 440	0.106	3.06°10 °	0.017	13
KJ 4 0 -44 7	0.170	3.63.10	0.015	10
R349-462	0.689	1.51·10 ⁻³	0.049	10
R349-463	0.739	1.62.10-3	0.177	13
R349-464	0.721	1.58·10 ⁻³	0.098	16
D350 470	0 221	7 02 10-4	0.017	10
RJJU-477	0.321	7.02.10	0.017	10
K330-480	0.319	0.98.10	0.043	13
R350-481	0.382	8.36.10-	0.080	16
R360-492	0.770	1.69·10 ⁻³	0.093	3
R360-493	0.805	1.76·10 ⁻³	0.092	6
R360-494	0.775	1.70.10-3	0.174	10
D262 517	0 746	1 62 10-8	0.000	10
RJ02-J17	0.740	1.03.10 -	0.090	10
K302-318	0.713	1.56.10	0.065	13
K302-319	0.083	1.50.10-2	0.090	16
R366-534	0.283	6.18.10-4	0.076	10
R366-535	0.313	6.86.10-4	0.022	13
R366-536	0.446	9.76.10-4	0.060	16
			·	

Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
R367-549	0.507	1.11·10 ⁻³	0.056	10
R367-550	0.500	1.09.10-3	0.082	13
R367-551	0.481	1.05.10-3	0.067	16
R377-565	0.466	1.02·10 ⁻³	0.076	10
R377-567	0.379	8.29.10-4	0.053	16
R377-570	0.414	9.07.10-4	0.048	26
R379-592	0.670	1.47·10 ⁻³	0.036	10
R379-593	0.662	1.45·10 ⁻³	0.035	13
R379-594	0.686	1.50.10-3	0.056	16
R383-613	0.549	1.20·10 ⁻³	0.088	10
R383-614	0.512	1.12.10-3	0.094	13
R383-615	0.498	1.09.10-3	0.057	16
R384-628	0.592	1.29·10 ⁻³	0.090	10
R384-629	0.538	1.18.10-3	0.073	13
R384-630	0.458	1.00.10-3	0.036	16
R388-644	0.558	1.22·10 ⁻³	0.069	10
R388-645	0.660	1.44.10-3	0.056	13
R388-646	0.662	1.45.10-3	0.092	16
R389-659	0.538	1.18.10-3	0.076	10
R389-660	0.754	1.65.10-3	0 139	13
R389-661	0.690	1.51.10-3	0.034	16
R392-677	0 573	1 25.10-3	0.094	10
D302-678	0.641	1.40.10-\$	0.004	10
R392-679	0.735	1.61·10 ⁻³	0.103	13
D202 602	A 699	1 60 10-5	0.070	
R373-072	0.000	1.50.10-5	0.070	10
K393-093	0.908	1.99.10-3	0.136	13
K393-094	0.960	2.10.10-3	0.113	16
R397-707	0.606	1.33.10-3	0.107	10
R397-708	0.738	1.61.10-3	0.085	13
R397-709	0.961	2.10.10-3	0.168	16
R398-722	0.643	1.41.10-3	0.060	10
R398-723	0.860	1.88·10 ⁻³	0.324	13
R398-724	1.001	2.19·10 ⁻³	0.311	16
R402-738	0.482	1.05·10 ⁻³	0.035	10
R402-739	0.683	1.50·10 ⁻³	0.143	13
R402-740	0.640	1.40·10 ⁻³	0.105	16

DASH-8	2-D
--------	-----

_	Run-Frame	μ [mm]	μ/length	σ [mm]	t [seconds]
	R403-753	0 934	2 04.10-3	0 309	10
	D403-754	0.774	1 60.10-3	0.307	12
	DA02 755	0.774	1.09.10	0.103	15
	R405-755	0.790	1.73.10	0.085	10
	R407-767	0.535	1.17·10 ⁻³	0.068	10
	R407-768	0.508	1.11·10 ⁻³	0.062	13
	R407-769	0.610	1.34.10-3	0.163	16
	D 400 700	0.444			
	R408-782	0.664	1.45.10-3	0.021	10
	R408-783	0.674	1.48·10 ⁻³	0.102	13
	R408-784	0.824	1.80·10 ⁻³	0.232	16
	R411-797	0.494	1.08.10-3	0 034	10
	R411-798	0.498	1.09.10-3	0.065	13
	R411-799	0.525	1.15.10-3	0.059	16
	R412-812	0.475	1.04.10-3	0.048	10
	R412-813	0.448	9.80.10-4	0.034	13
	R412-814	0.464	1.02·10 ⁻³	0.035	16
	R413-828	0.515	1.13·10 ⁻⁸	0.043	10
	R413-829	0.516	1 13.10-3	0 1 1 0	13
	R413_830	0 546	1 10.10-3	0.110	15
	17410-000	0.040	1.17.10	0.072	10

National Aeronautics and Space Administration	Report Documenta	tion Pa	ge	
1. Report No.	2 Government Association	-	-	
NASA CR-189234	2. Government Accession N	0.	3. Recipient's Ca	talog No.
			5. Report Date	
Digital Analysis o Measure Fluid Thio	of Wind Tunnel Imagery to ckness		6. Performing Org	anization Code
. Author(s)			8. Performing Org	anization Report No.
Roger L. Easton, J	Jr. and James Enge		None	
			10 Work Upit No	
			IV. WOR UNIT NO.	
Performing Organization Name and	Address			
Center for Imaging	g Science	:	11. Contract or Gra	nt No.
Rochester Institut	e of Technology		NAG3-1202	
Kochester, NY 146	23-0889		13 Type of Passet	and Paried One
Sponsoring Agency Name and Addr				
	-		Final	C Report
National Aeronauti	cs and Space Administrat:	Lon	14. Sponsoring Ager	ncy Code
Cleveland, Obio 4	4135-3101			
Supplementary Notes	4155-5191			
Lewis Research Cen Abstract	c Technology Branch ter	<u>. </u>		
lcing and Cryogeni Lewis Research Cen Abstract This report documer of digital image pr ness of a deicing r fluid contained a r illumination on pho a personal computer	c Technology Branch ter nts the procedure and res rocessing techniques to t fluid on a model airfoil fluorescent dye and the i ptographic film. The film r to obtain maps of the f	ults ob he prob during mages w s were luid th	tained from th lem of measuri simulated take ere recorded u digitized and ickness.	e application ng the thick- offs. The nder flash analyzed on
lcing and Cryogeni Lewis Research Cen Abstract This report documen of digital image pr ness of a deicing r fluid contained a r illumination on pho a personal computer	c Technology Branch ter nts the procedure and res rocessing techniques to t fluid on a model airfoil fluorescent dye and the i otographic film. The film r to obtain maps of the f	ults ob he prob during mages w s were luid th	tained from th lem of measuri simulated take ere recorded u digitized and ickness.	e application ng the thick- offs. The nder flash analyzed on
lcing and Cryogeni Lewis Research Cen Abstract This report documes of digital image pr ness of a deicing f fluid contained a f illumination on pho a personal computer	c Technology Branch ter nts the procedure and res rocessing techniques to t fluid on a model airfoil fluorescent dye and the i ptographic film. The film r to obtain maps of the f	ults ob he prob during mages w s were luid th	tained from th lem of measuri simulated take ere recorded u digitized and ickness.	e application ng the thick- offs. The nder flash analyzed on
Icing and Cryogeni Lewis Research Cen Abstract This report documes of digital image po ness of a deicing of fluid contained a of illumination on pho a personal computer Key Words (Suggested by Author(s))	c Technology Branch ter nts the procedure and res rocessing techniques to t fluid on a model airfoil fluorescent dye and the i otographic film. The film r to obtain maps of the f	ults ob he prob during mages w s were luid th	tained from th lem of measuri simulated take ere recorded u digitized and ickness.	e application ng the thick- offs. The nder flash analyzed on
Icing and Cryogeni Lewis Research Cen Abstract This report documen of digital image priness of a deicing filuid contained a filuid inlumination on pho a personal computer (ey Words (Suggested by Author(s)) digital image proce deicing fluid thick	c Technology Branch ter nts the procedure and res rocessing techniques to t fluid on a model airfoil fluorescent dye and the i otographic film. The film r to obtain maps of the f 18. Distr ssing ness St	ults ob he prob during mages w s were luid th ibution State ibution State ibject C	tained from th lem of measuri simulated take ere recorded u digitized and ickness.	e application ng the thick- offs. The nder flash analyzed on
Icing and Cryogeni Lewis Research Cen Abstract This report document of digital image priness of a deicing filuid contained a filuid contained a filuid contained a filuid contained a personal computer (ey Words (Suggested by Author(s)) digital image procedeicing fluid thick	c Technology Branch ter Iter Ints the procedure and ress rocessing techniques to t fluid on a model airfoil fluorescent dye and the i otographic film. The film r to obtain maps of the f 18. Distr ssing ness 20. Security Cleart (of this area	ults ob he prob during mages w s were luid th ibution States nclassif ibject C	tained from th lem of measuri simulated take ere recorded u digitized and ickness.	e application ng the thick- offs. The nder flash analyzed on

· . ·

.

NASA FORM 1	626 OCT	86
-------------	---------	----

.

*For sale by the National Technical Information Service, Springfield, Virginia 22161