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Abstract 1 

Background:  Previous gene-environment interaction studies of breast cancer risk have provided 2 

sparse evidence of interactions. Using the largest available dataset to date, we performed a 3 

comprehensive assessment of potential effect modification of 205 common susceptibility 4 

variants by 13 established breast cancer risk factors including replication of previously reported 5 

interactions. 6 

Methods: Analyses were performed using 28,176 cases and 32,209 controls genotyped with 7 

iCOGS array and 44,109 cases and 48,145 controls genotyped using OncoArray from the Breast 8 

Cancer Association Consortium (BCAC). Gene-environment interactions were assessed using 9 

unconditional logistic regression and likelihood ratio tests for breast cancer risk overall and by 10 

estrogen-receptor(ER) status. Bayesian False Discovery Probability was used to assess the 11 

noteworthiness of the meta-analyzed array-specific interactions.  12 

Results: Noteworthy evidence of interaction at ≤1% prior probability was observed for three 13 

SNP-risk factor pairs. SNP rs4442975 was associated with a greater reduced risk of ER-positive 14 

breast cancer (ORint = 0.85 (0.78 – 0.93), pint = 2.8 x 10
-4

) and overall breast cancer (ORint = 0.85 15 

(0.78 – 0.92), pint = 7.4 x 10
-5

) in current users of estrogen-progesterone therapy compared to 16 

non-users. This finding was supported by replication using OncoArray data of the previously 17 

reported interaction between rs13387042 (r
2
 = 0.93 with rs4442975) and current estrogen-18 

progesterone therapy for overall disease (pint = 0.004). The two other interactions suggested 19 

stronger associations between SNP rs6596100 and ER-negative breast cancer with increasing 20 

parity and younger age at first birth.  21 
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Conclusion: Overall, our study does not suggest strong effect modification of common breast 1 

cancer susceptibility variants by established risk factors.   2 
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Key messages 

 The association between common breast cancer susceptibility loci and breast cancer 

risk is not strongly modified by established breast cancer risk factors. 

 The combined effect of susceptibility loci and established risk factors is thus well 

described by a multiplicative model. 

 We found one noteworthy G x E interaction with overall and ER-positive breast 

cancer risk, which was replicated, and two novel noteworthy G x E interactions with 

ER-negative breast cancer risk. 

 In an independent dataset, we replicated two previously reported G x E interactions. 
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Introduction 1 

Breast cancer is a complex disease with both environmental and genetic factors contributing to 2 

risk. Well-established modifiable and non-modifiable environmental factors include age at 3 

menarche, parity, age at first birth, breastfeeding, body mass index (BMI), use of menopausal 4 

hormonal therapy (MHT), and alcohol consumption (1-6). In addition, high to moderate-risk 5 

gene mutations such as BRCA1, BRCA2, TP53, ATM, and CHEK2 increase the risk of breast 6 

cancer (7-14), as well as multiple common, low-risk single nucleotide polymorphisms (SNPs) 7 

discovered through genome-wide association studies (GWAS). Approximately 170 genome-wide 8 

significant breast cancer susceptibility loci have been identified, including the recently published 9 

65 novel loci associated with overall breast cancer and 10 loci with estrogen receptor (ER)-10 

negative breast cancer risk, identified through the OncoArray project (15, 16).  11 

Estimation of any combined effect of genetic and environmental factors, including gene-12 

environment (G x E) interactions is considered to possibly improve breast cancer risk prediction, 13 

and hence identification of women at high-risk for targeted prevention. However, development 14 

of these risk models depends on knowledge of the joint effects of genetic and environmental risk 15 

factors, in particular departures from a multiplicative model (that is, G x E interaction on relative 16 

risk scale) (17). More importantly, G x E studies of individual susceptibility loci may also 17 

provide insight on potential underlying biological mechanisms that could mediate causal effects 18 

of a factor on risk of breast cancer. 19 

Previous G x E interaction studies of breast cancer have reported nearly 30 potential G x E 20 

interactions with little evidence of departures from multiplicative model (18, 19). Most reported 21 

G x E interactions for breast cancer have not been replicated in independent datasets. Two G x E 22 
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interactions were replicated using data from the Breast Cancer Association Consortium (BCAC) 1 

(20), but were not replicated in a smaller study by the Breast and Prostate Cancer Cohort 2 

Consortium (21). In this study, we assess  interactions between 205 known common breast 3 

cancer susceptibility loci and 13 established environmental risk factors in relation to risk of 4 

overall and estrogen receptor (ER)-specific breast cancer for women of European ancestry, using 5 

the largest available dataset to date from the Breast Cancer Association Consortium (BCAC). 6 

Additionally, we attempted to replicate previously reported potential G x E interactions (18).  7 

Materials and Methods 8 

Study population 9 

We analyzed data from 46 studies (16 prospective cohorts, 14 population-based case-control 10 

studies and 16 non-population based studies) participating in BCAC (Supplementary Table 1). 11 

Participants were excluded if they were male, were of non-European descent, had breast tumors 12 

of unknown invasiveness, or had in-situ disease or prevalent disease at the time of assessment. 13 

Women with unknown age at reference date (defined as date of diagnosis for cases and interview 14 

for controls) were also excluded. For each risk factor, only studies with risk factor information 15 

for at least 150 cases and 150 controls were included. All participating studies were approved by 16 

the relevant ethics committees and informed consent was obtained from study participants.  17 

Data harmonization and variable definition 18 

Data for risk factors from different studies were harmonized according to a common data 19 

dictionary and centrally quality controlled. For both case-control and cohort studies, 20 

epidemiological risk factor data was derived with reference to reference date (described above). 21 

We used reference age as surrogate to categorize women as probably pre-menopausal (<54 22 
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years) or post-menopausal (≥54 years) status. The environmental variables available for  analysis 1 

were: age at menarche (per 2 years), ever parous (yes or no), and for parous women,  number of 2 

full-term pregnancies (1, 2, 3 and ≥4), age at first full-term pregnancy (per 5 years), ever 3 

breastfed (yes or no), duration of breastfeeding (per 12 months), and for all women, ever use of 4 

oral contraceptives (yes or no), adult body mass index (BMI) separately for pre- and 5 

postmenopausal women (per 5 kg/m
2
), adult height (per 5 cm), lifetime alcohol consumption (per 6 

10 g/day), current smoking (yes or no), and current use of combined estrogen-progesterone 7 

menopausal hormonal therapy (MHT) (yes or no) as well as current use of estrogen-only MHT 8 

for postmenopausal women (yes or no).  9 

Genetic data 10 

Samples were genotyped using one of the two SNP arrays – iCOGS(22) or OncoArray(15).  11 

Included in the analyses were 28 176 cases and 32 209 controls of European ancestry genotyped 12 

by the custom iSelect genotyping array (iCOGS), comprising 211 155 SNPs(22), and 44 109 13 

cases and 48 145 controls genotyped using the OncoArray 500K, comprising 533 000 SNPs, 14 

nearly 260 000 of which were selected as a “GWAS backbone” (Illumina HumanCore) (23). 15 

These data were used to impute genotypes for ~11.8M SNPs using the 1000 Genomes Project 16 

(phase 3 version 5) reference panel (15, 16). Details of genotyping and quality control 17 

procedures for the iCOGS and OncoArray projects are described in more detail elsewhere (15, 18 

22, 23).  19 

A total of 205 common breast cancer susceptibility variants were selected for evaluation of G x E 20 

interactions (Supplementary Table 2). These variants have been associated with breast cancer 21 

risk either through GWAS (24-34)  or by fine mapping of associated regions (35-52). Of these, 22 
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72 were identified through the OncoArray project and had not been previously evaluated for G x 1 

E interactions (15, 16).  2 

For replication of the previously reported interactions, we analyzed a subset of 30 544 cases and 3 

37 616 controls genotyped using the OncoArray array, which had not been included in previous 4 

G x E studies. We evaluated 33 potential G x E interactions that had been previously reported 5 

(Supplementary Table 3) (18).  6 

Statistical analysis 7 

Unconditional logistic regression analysis was employed to assess associations of SNPs and risk 8 

factors with breast cancer risk. For SNPs, the estimated number of minor alleles based on 9 

imputation was included as a continuous variable. SNP-risk factor interactions were assessed 10 

using likelihood ratio tests, based on unconditional logistic regression models with and without 11 

an interaction term between the SNP and risk factor of interest. All analyses were adjusted for 12 

study, reference age, and ten ancestry-informative principal components. To account for 13 

differential main effects of risk factors by study design, we included an interaction term between 14 

the risk factor of interest and an indicator variable for study design (population-based and non-15 

population-based), along with the main effect for study design. 16 

Analyses were conducted separately for overall breast cancer risk and for ER-subtype specific 17 

breast cancer risk. The analyses were performed separately for women genotyped by iCOGS or 18 

OncoArray and the results were meta-analyzed using a fixed-effects inverse-variance weighted 19 

model. Between-study heterogeneity in the G x E interaction effect estimates was assessed by 20 

Cochrane’s Q-test and I
2
index.   21 
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MHT was classified into estrogen-progesterone therapy (EPT) and estrogen-only therapy (ET). 1 

Models assessing the association with current MHT use by type were adjusted for former use of 2 

MHT and use of any MHT preparation other than the one of interest. All analyses of MHT use 3 

were restricted to postmenopausal women. Models evaluating the association with current 4 

smoking were adjusted for former smoking.  5 

To assess the noteworthiness of the observed G x E interactions we calculated Bayesian False 6 

Discovery Probability (BFDP) at five different prior probabilities for a true association (20%, 7 

10%, 1%, 0.1% and 0.01%). G x E interactions with BFDP <80% were considered as 8 

noteworthy. This was based on the assumption of a four-fold cost of a false non-discovery 9 

compared with the cost of a false discovery and that the probability of observing a true 10 

interaction odds ratio (OR) inside the range of 0.66-1.50 was 95%, as proposed by Wakefield et 11 

al.(53). We also computed a complementary measure to BFDP known as approximate Bayes 12 

factor (ABF). It approximates the ratio of the probability of the data given that the null 13 

hypothesis is true to the probability of the data when the alternative hypothesis is true, the null 14 

hypothesis being absence of any interaction. Therefore, a lower ABF favors the alternative 15 

hypothesis over the null hypothesis of absence of an interaction. For noteworthy G x E 16 

interactions, we performed stratified analyses by categories of the environmental risk factor 17 

using logistic regression. Analyses were carried out using SAS 9.4 or R version 3.4.2. Meta-18 

analyses and tests of between-study heterogeneity were conducted using the R package “meta” 19 

(version 4.9-2). 20 

Results 21 
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The studies included in this analysis are listed in Supplementary Table 1. The number of cases 1 

and controls with data for each risk factor varied, ranging from 23 755 cases and 30 153 controls 2 

with data for parity to 5078 cases and 6867 controls with data for cumulative lifetime intake of 3 

alcohol in the iCOGS dataset and from 37 863 cases and 44 533 controls with data for parity to 4 

12 213 cases and 13 232 controls with data for lifetime alcohol intake in the OncoArray dataset 5 

(Supplementary Table 4 & 5).  6 

The SNP associations with risk of overall as well as ER-subtype breast cancer were consistent 7 

with those reported in literature (15, 16) (Supplementary Table 2 & 3). The associations of the 8 

environmental risk factors with breast cancer risk were as expected in the population-based 9 

studies; in brief, age at menarche, being parous, number of full-term pregnancies, ever 10 

breastfeeding, cumulative duration of breastfeeding, and premenopausal BMI were negatively 11 

associated with breast cancer risk, whereas age at first full-term pregnancy, ever use of oral 12 

contraceptives, postmenopausal BMI, current use of EPT, adult height, current smoking and 13 

cumulative alcohol consumption were all positively associated with breast cancer risk (Table 1 14 

& Supplementary Figures 1-3).  15 

We identified three SNP-risk factor interactions as noteworthy (BFDP < 0.8) at ≤1 % prior 16 

probability (Table 2). The strongest G x E interaction was found for SNP rs4442975 and current 17 

use of EPT (ORmeta-int = 0.85, 95% CI = 0.78 – 0.92, pmeta-int = 7.4 x 10
-5

, BFDP = 0.73) with 18 

overall breast cancer at 0.1% prior probability. The minor allele of SNP rs4442975 was 19 

associated with a stronger reduced risk of breast cancer for current users of EPT (ORmeta = 0.74, 20 

95% CI = 0.69 – 0.80) than for never users of MHT (ORmeta = 0.87, 95% CI = 0.84 – 0.90) 21 

(Figure 1A). This interaction was also found to be noteworthy at 1% prior probability for risk of 22 

ER-positive breast cancer (ORmeta-int = 0.85, 95% CI = 0.78 – 0.93, pmeta-int = 2.8 x 10
-4

, BFDP = 23 
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0.46). The association of rs4442975 with reduced risk of ER-positive breast cancer was stronger 1 

for current users of EPT (ORmeta = 0.73, 95% CI = 0.68 – 0.79) than for never MHT users 2 

(ORmeta = 0.86, 95% CI = 0.83 – 0.89) (Figure 1B).  3 

The two other noteworthy SNP-risk factor interactions were found for ER-negative breast cancer 4 

risk. The interaction between rs6596100 and number of full-term pregnancies was noteworthy at 5 

1% prior probability (ORmeta-int = 0.91, 95% CI = 0.85 – 0.96, pmeta-int = 8.2 x 10
-4

, BFDP = 0.74). 6 

The minor allele of the rs6596100 variant was associated with a reduced risk of overall breast 7 

cancer (ORmeta = 0.96, 95% CI = 0.94 – 0.98) and ER-positive breast cancer (ORmeta = 0.94, 95% 8 

CI = 0.92 – 0.96), respectively, but not ER-negative breast cancer (ORmeta = 1.01, 95% CI = 0.97 9 

– 1.05). The rs6596100 associated risk of ER-negative breast cancer appears to decrease with 10 

number of full-term pregnancies for parous women, with the estimated per-allele ORmeta being 11 

1.06 (95% CI = 0.95 – 1.17) for women who had had one full-term pregnancy and 0.92 (95% CI 12 

= 0.82– 1.04) for women who had had four or more full-term pregnancies (Figure 1C).  13 

For parous women, we observed noteworthy evidence that the ER-negative breast cancer risk 14 

associated with rs6596100 was also modified by age at first full-term pregnancy (ORmeta-int = 15 

1.12, 95% CI = 1.05 – 1.19, pmeta-int = 3.3 x 10
-4

, BFDP = 0.56). The risk conferred by rs6596100 16 

on ER-negative breast cancer was decreased for women with age at first full-term pregnancy 17 

below 20 years (ORmeta of 0.90 (95% CI = 0.79 – 1.03)) but increased for women with age at first 18 

full term pregnancy ≥ 30 years (ORmeta of 1.10 (95% CI = 0.97 – 1.24)) (Figure 1D). However, 19 

we observed between-study heterogeneity for the interaction between rs6596100 and age at first 20 

full-term pregnancy (Supplementary Figure 4). Several other interactions were found to be 21 

noteworthy (BFDP <0.8) at 5% prior probability (Supplementary Table 6). Meta-analyzed 22 
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results of all the G x E interactions for overall and ER-subtype risk are shown in Supplementary 1 

Tables 7-9.  2 

In replication analyses, we found evidence for two previously reported associations in the 3 

independent subset of OncoArray data (Supplementary Table 10). We estimated an interaction 4 

OR for overall breast cancer of 0.80 (95% CI = 0.69-0.93, pint = 0.004) for current EPT use and 5 

rs13387042, a SNP for which we had previously reported an interaction OR of 0.83 (95% CI = 6 

0.74-0.94, pint = 2.43 x 10
-3

) (20).  SNP rs13387042 is in strong linkage disequilibrium with 7 

rs4442975; hence this result is consistent with the interaction observed for rs4442975 in the full 8 

dataset. In addition, we also observed evidence for a G x E interaction between rs941764 and 9 

cumulative lifetime intake of alcohol (<20 g/day vs. ≥20g/day) with ER-negative breast cancer 10 

risk (ORint of 0.64, 95% CI = 0.45 – 0.92, pint = 0.01), compared with ORint of 0.53 (95% CI = 11 

0.36 – 0.76, pint = 6.8 x 10
-4

) in Rudolph et al. (54).  The corresponding meta-analyzed 12 

interaction OR (per 10g/day cumulative lifetime alcohol intake) based on OncoArray and iCOGS 13 

datasets was 0.90 (95% CI = 0.81 – 0.99, pint = 0.03). For the G x E interaction between SNP 14 

rs3817198 and number of children for parous women, which had the strongest evidence for 15 

overall risk of breast cancer in previous analyses (ORint of 1.06 (95% CI =1.04 – 1.08), pint = 2.4 16 

x 10
-06

) (20), there was weak evidence of interaction, but in the opposite direction in the 17 

replication analyses (ORint of 0.94 (95% CI = 0.94 – 1.00, pint = 0.03).  18 

Discussion 19 

In this study, we evaluated all known common susceptibility loci for interactions with breast 20 

cancer risk factors, and found little evidence for departures from a multiplicative model. We 21 

refer to G x E interactions as effect modification conferred by epidemiological risk factors on the 22 
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association between SNPs and breast cancer risk but, it can very well be SNPs modifying the 1 

association of risk factors with breast cancer risk. We identified three noteworthy (BFDP <0.8) G 2 

x E interactions related to breast cancer risk based on prior probabilities ≤1%. The strongest 3 

evidence was found for effect modification between rs4442975 and current use of EPT with 4 

overall and ER-positive breast cancer risk. Moreover, we found evidence of interactions between 5 

the SNP rs6596100 and number of full-term pregnancies and age at first full-term pregnancy, 6 

respectively, for ER-negative breast cancer risk.  7 

The SNP rs4442975 is located in an intergenic region on the long arm of chromosome 2 (2q35). 8 

Another SNP within the same genomic region, rs13387042, was previously reported to show an 9 

interaction also with current use of EPT (20). We replicated this interaction between rs13387042 10 

and current use of EPT using the OncoArray dataset. The two SNPs rs13387042 and rs4442975 11 

are highly correlated (r
2
 = 0.93) and conditional analysis yielded a significant association only 12 

for rs4442975, so that these results reflect the same interaction. Fine-mapping and functional 13 

analyses have identified rs4442975 to be the most likely causal variant in this region (43). Thus 14 

despite the small difference in the risk estimates between never and current EPT, replication of 15 

this G x E interaction reinforced what we found previously, implicating the role of the IGFBP5 16 

gene and estrogen pathway in breast cancer. 17 

Functional analyses indicate that SNP rs4442975 lies near a transcriptional enhancer which 18 

physically interacts with the IGFBP5 promoter, suggesting that the T allele of rs4442975 19 

decreases susceptibility to breast cancer via increased expression of insulin-like growth factor 20 

binding protein 5 (IGFBP5) (43). IGFBP5 is a key member of the insulin-like growth factor 21 

(IGF) axis which plays an important role in cellular differentiation, proliferation and apoptosis in 22 

breast cancer (55). Activation of the IGF receptors by IGF causes phosphorylation of insulin 23 
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receptor substrates (IRS-1 & IRS-2). This phosphorylation cascades multiple downstream 1 

signaling pathways such as Ras/mitogen-activated protein kinase (MAPK) and phosphoinositide 2 

(PI3K) serine-threonine kinase (AkT) which play a role in breast carcinogenesis (56, 57). 3 

Estrogen can stimulate the IGF pathway via increased expression of both insulin-like growth 4 

factor receptor-1 and IRS-1. Some studies have also reported a positive correlation between 5 

overexpression of IGFBP5 and the presence of ER in breast cancer cell lines. Progesterone has 6 

been shown to act by increasing levels of IRS-2 and sensitizing breast cancer cells to 7 

downstream signaling pathways such as MAPK and Akt (58-60). It is plausible that exogenous 8 

hormone exposure due to estrogen and progesterone therapy may affect the regulation of the IGF 9 

pathway and thereby modulate germline IGFPB5 variant-related susceptibility to breast cancer.  10 

Note however that two other independent breast cancer risk variants in this region (tagged by 11 

rs16857609 (13) and a 1.3kb insertion/deletion (49)) are also believed to target IGFBP5 but we 12 

did not find evidence for interactions between these variants and current EPT use. 13 

Women of young age at first pregnancy are known to have increased circulating sex hormone 14 

binding globulin and prolactin but decreased total estrogen levels (61, 62). Likewise, women 15 

who have had multiple full-term pregnancies have an overall decreased lifetime exposure to 16 

estrogen (61, 63, 64). The association of rs6596100 with ER-negative breast cancer risk was 17 

found to be modified by number of full-term pregnancies and age at first full-term pregnancy for 18 

parous women. Based on INQUISIT (15), the target genes of  rs6596100 and highly correlated 19 

SNPs are predicted to be heat shock protein family A member 4 (HSPA4) and AF4/FMR2 family 20 

member 4 (AFF4). INQUISIT predicts HSPA4 as the most likely target due to overlap of 21 

multiple correlated SNPs lying in HSPA4 promoter region, distal regulatory elements and coding 22 

sequence. HSPA4 gene is responsible for production of heat shock proteins (Hsps), particularly 23 
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those belonging to the family HSP70. The underlying mechanisms regarding the relationship 1 

between rs6596100 and these pregnancy-related risk factors are unknown at present. It is 2 

plausible that a lower estrogenic milieu due to reproductive factors may affect the formation of 3 

multi-complexes between steroid receptors like ER and heat shock proteins (HSPs), and 4 

therefore affecting signaling pathways such as Wnt, ErbB, serine/threonine and tyrosine protein 5 

kinase, which are known to be involved in breast carcinogenesis. While there is some biological 6 

plausibility regarding the observed interactions with rs6596100, the findings nevertheless could 7 

be by chance and thus require independent replication. 8 

The SNP rs941764 is located on chromosome 14 in intron of CCDC88C gene (15, 22). The 9 

effect modification of rs941764 associated ER-negative breast cancer risk by lifetime intake of 10 

alcohol was first reported by Rudolph et al.(54). We replicated this G x E interaction in an 11 

independent dataset in our study.  Mutations in this gene region have been associated with 12 

dysregulation of Wnt signaling in neural disorders such as congenital hydrocephalus (65). This 13 

gene codes a Hook-related protein (HkRP2) that binds to an important scaffold protein, 14 

Dishevelled, in the Wnt signaling pathway, affecting all downstream activity (65).  15 

A role of alcohol has been well recognized in initiation and progression of breast cancer 16 

presumably via multiple cellular and molecular mechanisms, including the EGFR/ErbB2 17 

pathways. Downstream to EGFR/ErbB2 pathways lie multiple pathways such as the MAPK, 18 

Wnt/GSK3β/β-catenin pathways (66). Therefore, alcohol consumption could affect the risk of 19 

ER-negative breast cancer through dysregulation of Wnt signaling.  20 

Our study provides the most comprehensive evaluation to date of potential effect modification of 21 

all known common genetic susceptibility variants by environmental risk factors for breast 22 



16 
 

cancer. Our findings are based on the largest available dataset on breast cancer. Despite its large 1 

sample size, the study may remain statistically underpowered, considering the rather modest 2 

effect sizes of most of the common variants associated with breast cancer risk, and particularly 3 

for risk factors for which we have less data (Supplementary table 11) (18). Statistical power was 4 

further diminished for subtype-specific analyses due to reduced sample sizes, especially for ER-5 

negative breast cancer (10,896 ER-negative cases in the combined iCOGS and OncoArray 6 

dataset) (18).  The lack of strong effect modifications for breast cancer could also be explained 7 

by the overall weak to moderate associations of environmental risk factors except for MHT use 8 

with breast cancer risk along with the modest associations of common genetic variants. A further 9 

limitation of our study is that the findings may not be generalizable to other racial/ethnic groups 10 

since the analyses were restricted to women of European ancestry.  11 

In conclusion, our analyses suggest that most of the associated effects of breast cancer 12 

susceptibility loci and environmental risk factors are consistent with a multiplicative model. The 13 

strongest evidence for an interaction was between the candidate causal variant rs4442975 at 2q35 14 

and current use of EPT. The associated effect is supported by a plausible underlying biological 15 

mechanism, but further epidemiological and functional validation will be required to determine 16 

whether the interaction is genuine. The newly reported results for ER-negative breast cancer risk 17 

generate plausible biological hypotheses and may inform future functional studies. Overall, the 18 

results from our analyses do not suggest strong effect modification of the association between 19 

breast cancer susceptibility loci and risk of breast cancer by established epidemiological risk 20 

factors.  21 

 22 
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Table 1: Main effects for the epidemiologic variables included in the analyses, derived from population-based studies only. 

Environmental risk factor Overall breast cancer risk ER-positive breast cancer risk ER-negative breast cancer risk 

 Cases/Controls OR (95% CI) Cases/Controls OR (95% CI) Cases/Controls OR (95% CI) 

Age at menarche (per 2 years) 36893/46854 0.91 (0.89-0.92) 26630/46854 0.91 (0.89-0.93) 4255/25233 0.89 (0.85-0.93) 

Ever parous (yes/no) 37242/47173 0.81 (0.77-0.84) 26937/47173 0.78 (0.74-0.81) 4309/25585 0.94 (0.85-1.04) 

Number of full-term pregnancies (1,2,3, ≥4) 31390/41215 0.87 (0.85-0.88) 22720/41215 0.86 (0.84-0.87) 3273/18267 0.90 (0.86-0.94) 

Age at first full-term pregnancy (per 5 years)
1
 30168/39850 1.14 (1.12-1.16) 21869/39850 1.17 (1.14-1.19) 3472/21422 1.02 (0.97-1.06) 

Ever breastfed (yes/no)
1
 27786/30582 0.91 (0.88-0.95) 19691/30582 0.92 (0.88-0.96) 3533/19606 0.96 (0.88-1.03) 

Duration of breastfeeding (per 12 months)
1
 24553/25524 0.96 (0.93-0.98) 17355/25524 0.95 (0.93-0.98) 3315/18012 0.98 (0.94-1.03) 

Adult height (per 5 cm) 35767/46506 1.09 (1.08-1.10) 25763/46506 1.10 (1.09-1.12) 3954/24342 1.03 (1.00-1.05) 

Premenopausal BMI (per 5 kg/m
2
) 7994/10066 0.95 (0.92-0.98) 4835/9490 0.92 (0.89-0.95) 913/2030 1.07 (0.98-1.16) 

Postmenopausal BMI (per 5 kg/m
2
) 27495/32495 1.07 (1.05-1.09) 20503/32283 1.07 (1.05-1.09) 1758/11859 1.05 (1.00-1.11) 

Ever use of oral contraceptives (yes/no) 35126/44608 1.22 (1.18-1.26) 25271/44608 1.24 (1.20-1.29) 3939/24225 1.14 (1.05-1.23) 

Current use of EPT (yes/no)
2,3

 16637/17946 1.75 (1.65-1.87) 12566/17946 1.93 (1.81-2.06) 1190/7353 1.11 (0.92-1.34) 

Current use of ET (yes/no)
2,3

 16444/17920 1.10 (1.03-1.17) 11829/16844 1.11 (1.03-1.19) 936/6262 1.35 (1.11-1.64) 

Lifetime intake of alcohol (per 10 g/day) 15827/18723 1.07 (1.05-1.10) 11302/18723 1.09 (1.07-1.11) 1612/11562 1.03 (0.98-1.08) 

Current smoking (yes/no)
4
 33737/43222 1.18 (1.13-1.24) 24123/43222 1.18 (1.12-1.25) 3707/22573 1.06 (0.96-1.18) 

Pack years smoked (per 10 pack-years)
5
 7975/11709 1.02 (1.00-1.04) 5944/11709 1.02 (1.00-1.04) 896/6400 1.00 (0.95-1.04) 

ER: Estrogen receptor, OR: odd ratio, CI: confidence interval, BMI: Body mass index, EPT: Estrogen-Progesterone menopausal hormonal therapy, ET: Estrogen-only 

menopausal hormonal therapy 

All models were adjusted for reference age and study 
1
 for parous women 

2
 for postmenopausal women 

3
 Additionally, models were adjusted for former use of menopausal hormonal therapy and use of any other menopausal hormonal therapy preparations 

4
 Additionally, model was adjusted for former smoking 

5
 for ever smokers 

 

 



 



Table 2: Gene-environment interactions with Bayesian False Discovery Probability (BFDP) <80% at ≤1% prior probability. 

 

  iCOGS OncoArray Meta-analysis Prior probability (BFDP) 

Environmental risk 

factor 

SNP 

(Gene) 

ORint 

(95% CI) 

ORint 

(95% CI) 

ORint 

(95% CI) 

pint 

 
0.2 0.1 0.01 0.001 0.0001 ABF 

OVERALL BREAST CANCER RISK 

Current EPT use
1
 

rs4442975 

(IGFBP5) 

0.88 

(0.75 – 1.03) 

0.83 

(0.76 – 0.92) 

0.85 

(0.78 – 0.92) 
7.4E-05 0.011 0.023 0.209 0.727 0.964 0.003 

ER-POSITIVE BREAST CANCER RISK 

Current EPT use
1
 

rs4442975 

(IGFBP5) 

0.89 

(0.75 – 1.06) 

0.84 

(0.75 – 0.93) 

0.85 

(0.78 – 0.93) 
2.8E-04 0.033 0.072 0.462 0.896 0.989 0.009 

ER-NEGATIVE BREAST CANCER RISK 

Number of full-term 

pregnancies
2,3

 

rs6596100 

(HSPA4) 

0.84 

(0.75 – 0.93) 

0.94 

(0.87 – 1.01) 

0.91 

(0.85 – 0.96) 
8.2E-04 0.104 0.207 0.742 0.967 0.997 0.029 

Age at FFTP
2
 

rs6596100 

(HSPA4) 

1.13 

(1.02 – 1.26) 

1.11 

(1.03 – 1.19) 

1.12 

(1.05 – 1.19) 
3.3E-04 0.048 0.103 0.558 0.927 0.992 0.012 

ER: Estrogen receptor, ORint: Interaction odds ratio, CI: Confidence interval, SNP: Single nucleotide polymorphism, ABF: Approximate Bayes Factor, EPT: 

Estrogen-Progesterone therapy, FFTP: First full-term pregnancy, 
 

1
 for postmenopausal women only 

2
 for parous women only 

3
 categories: 1,2,3, ≥4 
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