158 research outputs found
Comprehensive review of several surfactants in marine environments: fate and ecotoxicity
Surfactants are a commercially important group of chemicals widely used on a global scale. Despite high removal efficiencies during wastewater treatment, their high consumption volumes mean that a certain fraction will always enter aquatic ecosystems, with marine environments being the ultimate sites of deposition. Consequently, surfactants have been detected within marine waters and sediments. However, aquatic environmental studies have mostly focused on the freshwater environment, and marine studies are considerably underrepresented by comparison. The present review aims to provide a summary of current marine environmental fate (monitoring, biodegradation, and bioconcentration) and effects data of 5 key surfactant groups: linear alkylbenzene sulfonates, alcohol ethoxysulfates, alkyl sulfates, alcohol ethoxylates, and ditallow dimethyl ammonium chloride. Monitoring data are currently limited, especially for alcohol ethoxysulfates and alkyl sulfates. Biodegradation was shown to be considerably slower under marine conditions, whereas ecotoxicity studies suggest that marine species are approximately equally as sensitive to these surfactants as freshwater species. Marine bioconcentration studies are almost nonexistent. Current gaps within the literature are presented, thereby highlighting research areas where additional marine studies should focus
Crystal structures of Burkholderia cenocepacia dihydropteroate synthase in the apo-form and complexed with the product 7,8-dihydropteroate
<p>Abstract</p> <p>Background</p> <p>The enzyme dihydropteroate synthase (DHPS) participates in the <it>de novo </it>synthesis of folate cofactors by catalyzing the formation of 7,8-dihydropteroate from condensation of <it>p</it>-aminobenzoic acid with 6-hydroxymethyl-7,8-dihydropteroate pyrophosphate. DHPS is absent from humans, who acquire folates from diet, and has been validated as an antimicrobial therapeutic target by chemical and genetic means. The bacterium <it>Burkholderia cenocepacia </it>is an opportunistic pathogen and an infective agent of cystic fibrosis patients. The organism is highly resistant to antibiotics and there is a recognized need for the identification of new drugs against <it>Burkholderia </it>and related Gram-negative pathogens. Our characterization of the DHPS active site and interactions with the enzyme product are designed to underpin early stage drug discovery.</p> <p>Results</p> <p>An efficient recombinant protein expression system for DHPS from <it>B. cenocepacia </it>(<it>Bc</it>DHPS) was prepared, the dimeric enzyme purified in high yield and crystallized. The structure of the apo-enzyme and the complex with the product 7,8-dihydropteroate have been determined to 2.35 Ã… and 1.95 Ã… resolution respectively in distinct orthorhombic crystal forms. The latter represents the first crystal structure of the DHPS-pterin product complex, reveals key interactions involved in ligand binding, and reinforces data generated by other structural studies. Comparisons with orthologues identify plasticity near the substrate-binding pocket and in particular a range of loop conformations that contribute to the architecture of the DHPS active site. These structural data provide a foundation for hit discovery. An intriguing observation, an artifact of the analysis, that of a potential sulfenamide bond within the ligand complex structure is mentioned.</p> <p>Conclusion</p> <p>Structural similarities between <it>Bc</it>DHPS and orthologues from other Gram-negative species are evident as expected on the basis of a high level of sequence identity. The presence of 7,8-dihydropteroate in the binding site provides details about ligand recognition by the enzyme and the different states of the enzyme allow us to visualize distinct conformational states of loops adjacent to the active site. Improved drugs to combat infections by <it>Burkholderia sp. </it>and related Gram-negative bacteria are sought and our study now provides templates to assist that process and allow us to discuss new ways of inhibiting DHPS.</p
Identification of Leishmania major UDP-Sugar Pyrophosphorylase Inhibitors Using Biosensor-Based Small Molecule Fragment Library Screening
Leishmaniasis is a neglected disease that is caused by different species of the protozoan parasite Leishmania, and it currently affects 12 million people worldwide. The antileishmanial therapeutic arsenal remains very limited in number and efficacy, and there is no vaccine for this parasitic disease. One pathway that has been genetically validated as an antileishmanial drug target is the biosynthesis of uridine diphosphate-glucose (UDP-Glc), and its direct derivative UDP-galactose (UDP-Gal). De novo biosynthesis of these two nucleotide sugars is controlled by the specific UDP-glucose pyrophosphorylase (UGP). Leishmania parasites additionally express a UDP-sugar pyrophosphorylase (USP) responsible for monosaccharides salvage that is able to generate both UDP-Gal and UDP-Glc. The inactivation of the two parasite pyrophosphorylases UGP and USP, results in parasite death. The present study reports on the identification of structurally diverse scaffolds for the development of USP inhibitors by fragment library screening. Based on this screening, we selected a small set of commercially available compounds, and identified molecules that inhibit both Leishmania major USP and UGP, with a half-maximal inhibitory concentration in the 100 µM range. The inhibitors were predicted to bind at allosteric regulation sites, which were validated by mutagenesis studies. This study sets the stage for the development of potent USP inhibitors
High-resolution structure of the M14-type cytosolic carboxypeptidase from <em>Burkholderia cenocepacia </em>refined exploiting <em>PDB_REDO </em>strategies
A potential cytosolic metallocarboxypeptidase from BurkÂholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn(2+)-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn(2+), where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate
Bystander Exposure to Ultra-Low-Volume Insecticide Applications Used for Adult Mosquito Management
A popular and effective management option for adult mosquitoes is the use of insecticides applied by ultra-low-volume (ULV) equipment. However, there is a paucity of data on human dermal exposure to insecticides applied by this method. The objective of the current study was to estimate dermal exposures to the insecticide active ingredient permethrin using water- (Aqua-Reslin®) and oil-based (Permanone® 30-30) formulations with passive dosimetry. No significant differences in deposition of permethrin were observed between years, distance from the spray source, front or back of the body, or the placement of the patches on the body. However, exposure to Aqua-Reslin was significantly greater than Permanone 30-30 and average concentrations deposited on the body were 4.2 and 2.1 ng/cm2, respectively. The greater deposition of Aqua-Reslin is most likely due to the higher density of the water-based formulation which causes it to settle out faster than the lighter oil-based formulation of Permanone 30-30. The estimated average absorbed dermal exposure for permethrin from Aqua-Reslin and Permanone 30-30 was 0.00009 and 0.00005 mg/kg body weight, respectively. We also found that ground deposition of ULV insecticides can be used as a surrogate for estimating dermal exposure. The estimated exposures support the findings of previous risk assessments that exposure to ULV applications used for mosquito management are below regulatory levels of concern
From bioavailability science to regulation of organic chemicals
The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessmen
- …