308 research outputs found

    Long term and recent climate changes recorded in North Atlantic oceanic archives around iceland

    No full text
    This contribution will compile paleoceanographic and paleoclimatic works which, over the last decades, provided major insights in our understanding of the Earth's climate natural variability and the underlying forcing mechanisms. A focus will be made on peri-icelandic marine records which document the climatic pace at different time-scales and are supported by multiproxy evidences. A special attention to the link in between the ocean and the cryosphere will be done

    The last interglacial in the northern North Atlantic and adjacent areas: evidence for a more zonal climate than during the Holocene

    Get PDF
    We document climate conditions from the last interglacial optimum (LIO) or marine isotope stage 5e (MIS 5e) from terrestrial and oceanic sedimentary archives. Terrestrial climate conditions are reconstructed from pollen assemblages, whereas sea-surface temperature and salinity conditions are estimated from dinocyst assemblages and foraminiferal data (both assemblages and stable isotope composition of carbonate shells). LIO data from the eastern Canadian Arctic and northern Labrador Sea led to reconstruct much higher summer air temperature and seasurface temperature than at present by about 5°C. Data from southeastern Canada and southern Labrador Sea also suggest more thermophilic vegetation and warmer conditions although the contrast between LIO and the Holocene is of lesser amplitude. On the whole, the terrestrial and marine data sets from the northwest North Atlantic and adjacent lands suggest limited influence of southward flow from Arctic waters through the east Greenland and Labrador Currents as compared to the modern situation. The compilation of sea-surface reconstructions from the northwest and northeast North Atlantic indicate much reduced longitudinal contrasts of temperatures than at present, thus a more zonal pattern of circulation. The reconstructions also indicate a lower sea-surface salinity than at present, thus stronger stratification of upper water masses, which would be compatible with a reduced North Atlantic deep-water formation

    Contrasting sea-surface responses between the western Mediterranean Sea and eastern subtropical latitudes of the North Atlantic during abrupt climatic events of MIS 3

    No full text
    EuroCLIMATE project RESOLuTIONInternational audienceAbstract Dinoflagellate cyst (dinocyst) analysis was conducted on two cores from the SW Iberian margin and central Alboran Sea from which high quality records of Marine Isotope Stage 3 have been previously derived. Our aim in this study is to compare the dinocyst signature between 50 and 25 ka BP with existing datasets of foraminiferal and geochemical proxies related to hydrological parameters. Quantitative reconstructions of sea-surface temperatures (SSTs) and salinities (SSS) based on dinocysts are performed for the first time in this area. The results are compared to SSTs derived from planktonic foraminifera and alkenone measurements, and to SSS calculated from planktonic δ18O and foraminiferal SST. Significant oscillations related to Dansgaard-Oeschger cycles are recorded in both cores. Dinocyst-derived hydrological parameters exhibit synchronous fluctuations and similar values to those derived from the other methods, in particular when considering quantitative reconstructions for February based on foraminifera and dinocysts. Our study shows that the influence of subpolar waters was felt during each Greenland Stadial (GS) off Portugal, and that the amplification of the Heinrich Stadial cooling in the Alboran Sea was related to the penetration of subpolar waters through the Strait of Gibraltar. During Greenland Interstadials (GI), we provide evidence for the occurrence of warm and nutrient-rich sea-surface waters in the Alboran Sea, probably due to gyre-induced upwelling. Finally, the difference between August and February dinocyst SST estimates suggests higher seasonal contrasts during GS compared to GI at the two core sites. Additionally, precession appears to have an imprint on dinocyst-derived long-term seasonality record. However, this observation needs to be confirmed by longer records. Research Highlights ► We provide new dinocyst data on core MD95-2043 (Alboran Sea) during MIS 3. ► Quantitative dinocyst sea-surface parameters (SST, SSS) are reconstructed. ► A multi-proxies compilation (microfossils, alkenones, isotopes) is established. ► This dataset has been compared with the one of a SW Iberian margin core. ► Millennial-scale climatic variability is perfectly apparent from each side of Gibraltar

    Ocean productivity in the Gulf of Cadiz over the last 50 kyr

    Get PDF
    Reconstructions of ocean primary productivity (PP) help to explain past and present biogeochemical cycles and climate changes in the oceans. We document PP variations over the last 50 kyr in a currently oligotrophic subtropical region, the Gulf of Cadiz. Data combine refined results from previous investigations on dinocyst assemblages, alkenones, and stable isotopes ( 18O, 13C) in planktonic (Globigerina bulloides) and endobenthic (Uvigerina mediterranea) foraminifera from cores MD04-2805 CQ and MD99-2339, with new isotopic measurements on epibenthic (Cibicides pachyderma–Cibicidoides wuellerstorfi) foraminifera and dinocyst-based estimates of PP using the new n = 1,968 modern database. We constrain PP variations and export production by integrating qualitative information from bio-indicators with dinocyst-based quantitative reconstructions such as PP and seasonal sea-surface temperature and information about remineralization from the benthic 13C (difference between epi- and endo-benthic foraminiferal 13C signatures). This study also includes new information on alkenone-based SST and total organic carbon which provides insights into the relationship between past regional hydrological activity and PP regime change. We show that PP, carbon export, and remineralization were generally high in the NE subtropical Atlantic Ocean during the last glacial period and that the Last Glacial Maximum (LGM) had lower 13C than the Heinrich Stadials with sustained high PP, likely allowing enhanced carbon sequestration. We link these PP periods to the dynamics of upwelling, active almost year-round during stadials, but restricted to spring-summer during interstadials and LGM, like today. During interstadials, nutrient advection through freshwater inputs during autumn–winter needs also to be considered to fully understand PP regimes.info:eu-repo/semantics/publishedVersio

    Atlantic circulation changes across a stadial-interstadial transition

    Get PDF
    We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry, in order to interpret the observed Cibicides &delta;13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides &delta;13C observed at the end of HS4 between ~2000 and 4200 m in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high latitude glacial North Atlantic. Our model results show that this Cibicides &delta;13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from ~40 % at 2000 m to ~80 % at 4000 m. Below ~4200 m, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials than interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.</p

    European climate optimum and enhanced Greenland melt during the Last Interglacial

    Get PDF
    The Last Interglacial climatic optimum, ca. 128 ka, is the most recent climate interval signifi cantly warmer than present, providing an analogue (albeit imperfect) for ongoing global warming and the effects of Greenland Ice Sheet (GIS) melting on climate over the coming millennium. While some climate models predict an Atlantic meridional overturning circulation (AMOC) strengthening in response to GIS melting, others simulate weakening, leading to cooling in Europe. Here, we present evidence from new proxy-based paleoclimate and ocean circulation reconstructions that show that the strongest warming in western Europe coincided with maximum GIS meltwater runoff and a weaker AMOC early in the Last Interglacial. By performing a series of climate model sensitivity experiments, including enhanced GIS melting, we were able to simulate this confi guration of the Last Interglacial climate system and infer information on AMOC slowdown and related climate effects. These experiments suggest that GIS melt inhibited deep convection off the southern coast of Greenland, cooling local climate and reducing AMOC by ~24% of its present strength. However, GIS melt did not perturb overturning in the Nordic Seas, leaving heat transport to, and thereby temperatures in, Europe unaffected. © 2012 Geological Society of America

    Atlantic circulation changes across a stadial-interstadial transition

    Get PDF
    [EN] We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry in order to interpret the observed Cibicides 13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides 13C observed at the end of HS4 between g1/42000 and 4200gm in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high-latitude glacial North Atlantic. Our model results show that this Cibicides 13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep-water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from g1/440g% at 2000gm to g1/480g% at 4000gm. Below g1/44200gm, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials compared to during interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.This research has been supported by the Research Council of Norway (RNC – KLIMAFORSK contract no. 326603/E10 and Coordination and Support Activity contract no. 310328/E10). The research leading to these results derives from exchanges and collaborations between participants in the ACCLIMATE ERC project (FP7/2007-2013 grant agreement no. 339108) and ice2ice ERC project (FP7/2007-2013 grant agreement no. 610055). Guncheng Guo acknowledges support from the RCN-funded project ABRUPT (project no. 325333). Susana Lebreiro acknowledges funding from project CTM2017-84113-R. Jerry Tjiputra acknowledges RCN project INES (project no. 270061).Peer reviewe

    Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka

    Get PDF
    This paper documents the migration of the Polar Front (PF) over the Iberian margin during some of the cold climatic extremes of the last 45 ka. It is based on a compilation of robust and coherent paleohydrological proxies obtained from eleven cores distributed between 36 and 42°N. Planktonic δ18O (Globigerina bulloides), ice-rafted detritus concentrations, and the relative abundance of the polar foraminifera Neogloboquadrina pachyderma sinistral were used to track the PF position. These three data sets, compared from core to core, show a consistent evolution of the sea surface paleohydrology along the Iberian margin over the last 45 ka. We focused on five time slices representative of cold periods under distinct paleoenvironmental forcings: the 8.2 ka event and the Younger Dryas (two recent cold events occurring within high values of summer insolation), Heinrich events 1 and 4 (reflecting major episodes of massive iceberg discharges into the North Atlantic), and the Last Glacial Maximum (typifying the highest ice volume accumulated in the Northern Hemisphere). For each event, we generated schematic maps mirroring past sea surface hydrological conditions. The maps revealed that the Polar Front presence along the Iberian margin was restricted to Heinrich events. The sea surface conditions during the Last Glacial Maximum were close to those at present day, except for the northern sites which briefly experienced subarctic conditions
    corecore