27 research outputs found

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Measurement of the CKM angle γ\gamma using B0DK0B^0 \rightarrow D K^{*0} with DKS0π+πD \rightarrow K^0_S \pi^+ \pi^- decays

    Get PDF
    A model-dependent amplitude analysis of the decay B0D(KS0π+π)K0B^0\rightarrow D(K^0_S\pi^+\pi^-) K^{*0} is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0fb1^{-1}, recorded at s=7\sqrt{s}=7 and 8TeV8 TeV by the LHCb experiment. The CP violation observables x±x_{\pm} and y±y_{\pm}, sensitive to the CKM angle γ\gamma, are measured to be \begin{eqnarray*} x_- &=& -0.15 \pm 0.14 \pm 0.03 \pm 0.01, y_- &=& 0.25 \pm 0.15 \pm 0.06 \pm 0.01, x_+ &=& 0.05 \pm 0.24 \pm 0.04 \pm 0.01, y_+ &=& -0.65^{+0.24}_{-0.23} \pm 0.08 \pm 0.01, \end{eqnarray*} where the first uncertainties are statistical, the second systematic and the third arise from the uncertainty on the DKS0π+πD\rightarrow K^0_S \pi^+\pi^- amplitude model. These are the most precise measurements of these observables. They correspond to γ=(8022+21)\gamma=(80^{+21}_{-22})^{\circ} and rB0=0.39±0.13r_{B^0}=0.39\pm0.13, where rB0r_{B^0} is the magnitude of the ratio of the suppressed and favoured B0DK+πB^0\rightarrow D K^+ \pi^- decay amplitudes, in a KπK\pi mass region of ±50MeV\pm50 MeV around the K(892)0K^*(892)^0 mass and for an absolute value of the cosine of the K0K^{*0} decay angle larger than 0.40.4.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-007.htm

    Search for dark photons produced in 13 TeV pppp collisions

    Get PDF
    Searches are performed for both promptlike and long-lived dark photons, A 0 , produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A 0 → μ þ μ − decays and a data sample corresponding to an integrated luminosity of 1 . 6 fb − 1 collected with the LHCb detector. The promptlike A 0 search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A 0 search is restricted to the low-mass region 214 <m ð A 0 Þ < 350 MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the γ – A 0 kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10 . 6 <m ð A 0 Þ < 70 GeV, and are comparable to the best existing limits for m ð A 0 Þ < 0 . 5 GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature

    Measurement of the CKM angle γ using B± → DK± with D → K S 0 π+π−, K S 0 K+K− decays

    No full text
    A binned Dalitz plot analysis of B ± → DK ± decays, with D→K0Sπ+π− and D→K0SK+K−, is performed to measure the CP-violating observables x ± and y ±, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ. The analysis exploits a sample of proton-proton collision data corresponding to 3.0 fb−1 collected by the LHCb experiment. Measurements from CLEO-c of the variation of the strong-interaction phase of the D decay over the Dalitz plot are used as inputs. The values of the parameters are found to be x + = (−7.7 ± 2.4 ± 1.0 ± 0.4) × 10− 2, x − = (2.5 ± 2.5 ± 1.0 ± 0.5) × 10− 2, y + = (−2.2 ± 2.5 ± 0.4 ± 1.0) × 10− 2 and y − = (7.5 ± 2.9 ± 0.5 ± 1.4) × 10− 2. The first, second, and third uncertainties are the statistical, the experimental systematic, and that associated with the precision of the strong-phase parameters. These are the most precise measurements of these observables and correspond to γ = (62 − 14 + 15) ° , with a second solution at γ → γ + 180°, and r B  = 0.080 − 0.021 + 0.019, where r B is the ratio between the suppressed and favoured B decay amplitudes

    Measurements of the branching fractions of Λ c +  → pπ−π+, Λ c +  → pK−K+, and Λ c +  → pπ−K+

    No full text
    The ratios of the branching fractions of the decays Λc+pππ+\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}, Λc+pKK+\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}, and Λc+pπK+\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+} with respect to the Cabibbo-favoured Λc+pKπ+\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+} decay are measured using proton-proton collision data collected with the LHCb experiment at a 7 TeV centre-of-mass energy and corresponding to an integrated luminosity of 1.0 fb1^{-1}: \begin{align*} \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})} &amp; = (7.44 \pm 0.08 \pm 0.18)\,\%, \\ \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+})}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})} &amp;= (1.70 \pm 0.03 \pm 0.03)\,\%, \\ \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+})}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})} &amp; = (0.165 \pm 0.015 \pm 0.005 )\,\%, \end{align*} where the uncertainties are statistical and systematic, respectively. These results are the most precise measurements of these quantities to date. When multiplied by the world-average value for B(Λc+pKπ+)\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}), the corresponding branching fractions are \begin{align*} \mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}) &amp;= (4.72 \pm 0.05 \pm 0.11 \pm 0.25) \times 10^{-3}, \\ \mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}) &amp;= (1.08 \pm 0.02 \pm 0.02 \pm 0.06) \times 10^{-3}, \\ \mathcal{B}(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}) &amp;= (1.04 \pm 0.09 \pm 0.03 \pm 0.05) \times 10^{-4}, \end{align*} where the final uncertainty is due to B(Λc+pKπ+)\mathcal{B}(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})

    Measurements of CP asymmetries in charmless four-body Lambda(0)(b) and Xi(0)(b) decays

    No full text

    Updated measurement of time-dependent CP-violating observables in B-s(0) -> J/psi K+ K- decays (vol 79, 706, 2019)

    No full text

    Precise determination of the B-s(0)-B-s(-0) oscillation frequency

    No full text

    Search for CP violation in Xi(+)(c) -> pK(-) pi(+) decays using model-independent techniques

    No full text
    corecore