12 research outputs found

    Diminished temperature and vegetation seasonality over northern high latitudes

    Get PDF
    Global temperature is increasing, especially over northern lands (>50° N), owing to positive feedbacks1. As this increase is most pronounced in winter, temperature seasonality (ST)—conventionally defined as the difference between summer and winter temperatures—is diminishing over time2, a phenomenon that is analogous to its equatorward decline at an annual scale. The initiation, termination and performance of vegetation photosynthetic activity are tied to threshold temperatures3. Trends in the timing of these thresholds and cumulative temperatures above them may alter vegetation productivity, or modify vegetation seasonality (SV), over time. The relationship between ST and SV is critically examined here with newly improved ground and satellite data sets. The observed diminishment of ST and SV is equivalent to 4° and 7° (5° and 6°) latitudinal shift equatorward during the past 30 years in the Arctic (boreal) region. Analysis of simulations from 17 state-of-the-art climate models4 indicates an additional STdiminishment equivalent to a 20° equatorward shift could occur this century. How SV will change in response to such large projected ST declines and the impact this will have on ecosystem services5 are not well understood. Hence the need for continued monitoring6 of northern lands as their seasonal temperature profiles evolve to resemble thosefurther south.Lopullinen vertaisarvioitu käsikirjoitu

    State of the Climate in 2016

    Get PDF

    Endocasts and the evo-devo approach to study human brain evolution

    No full text
    The brain is a highly plastic organ and is shaped not only during prenatal but also during postnatal development. The analysis and comparison of ontogenetic patterns of endocranial size increase and endocranial shape changes can therefore add further evidence for the interpretation of hominin brain evolution. Here we focus on digital endocast data and the methodology used to document and compare developmental patterns of endocranial shape changes. We outline how geometric morphometrics of endocranial landmark data can be used in an evo-devo approach to human brain evolution, discuss how developmental simulations help to compare ontogenetic patterns among species, present different visualization techniques that help to interpret ontogenetic shape changes, provide an overview of our current knowledge, present new data on early postnatal shape changes in apes, and discuss open questions
    corecore