198 research outputs found
A Bayesian method for evaluating and discovering disease loci associations
Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the posterior probability of complex hypotheses is a pressing need. Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model, and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data sets, previous findings in the literature are confirmed and additional findings are found. Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease loci associations. © 2011 Jiang et al
Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP
Aims/hypothesis
High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling.
Methods
Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake.
Results
Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity.
Conclusions/interpretation
The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.
Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
Genome-wide association reveals genetic effects on human Aβ<sub>42 </sub>and τ protein levels in cerebrospinal fluids: a case control study
<p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is common and highly heritable with many genes and gene variants associated with AD in one or more studies, including APOE ε2/ε3/ε4. However, the genetic backgrounds for normal cognition, mild cognitive impairment (MCI) and AD in terms of changes in cerebrospinal fluid (CSF) levels of Aβ<sub>1-42</sub>, T-tau, and P-tau<sub>181P</sub>, have not been clearly delineated. We carried out a genome-wide association study (GWAS) in order to better define the genetic backgrounds to these three states in relation to CSF levels.</p> <p>Methods</p> <p>Subjects were participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). The GWAS dataset consisted of 818 participants (mainly Caucasian) genotyped using the Illumina Human Genome 610 Quad BeadChips. This sample included 410 subjects (119 Normal, 115 MCI and 176 AD) with measurements of CSF Aβ<sub>1-42</sub>, T-tau, and P-tau<sub>181P </sub>Levels. We used PLINK to find genetic associations with the three CSF biomarker levels. Association of each of the 498,205 SNPs was tested using additive, dominant, and general association models while considering APOE genotype and age. Finally, an effort was made to better identify relevant biochemical pathways for associated genes using the ALIGATOR software.</p> <p>Results</p> <p>We found that there were some associations with APOE genotype although CSF levels were about the same for each subject group; CSF Aβ<sub>1-42 </sub>levels decreased with APOE gene dose for each subject group. T-tau levels tended to be higher among AD cases than among normal subjects. From adjusted result using APOE genotype and age as covariates, no SNP was associated with CSF levels among AD subjects. <it>CYP19A1 </it>'aromatase' (rs2899472), <it>NCAM2</it>, and multiple SNPs located on chromosome 10 near the <it>ARL5B </it>gene demonstrated the strongest associations with Aβ<sub>1-42 </sub>in normal subjects. Two genes found to be near the top SNPs, <it>CYP19A1 </it>(rs2899472, p = 1.90 × 10<sup>-7</sup>) and <it>NCAM2 </it>(rs1022442, p = 2.75 × 10<sup>-7</sup>) have been reported as genetic factors related to the progression of AD from previous studies. In AD subjects, APOE ε2/ε3 and ε2/ε4 genotypes were associated with elevated T-tau levels and ε4/ε4 genotype was associated with elevated T-tau and P-tau<sub>181P </sub>levels. Pathway analysis detected several biological pathways implicated in Normal with CSF β-amyloid peptide (Aβ<sub>1-42</sub>).</p> <p>Conclusions</p> <p>Our genome-wide association analysis identified several SNPs as important factors for CSF biomarker. We also provide new evidence for additional candidate genetic risk factors from pathway analysis that can be tested in further studies.</p
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA)
ACE Network
Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA)
The Autism Genome Project (AGP) from Autism Speaks (USA)
Canadian Institutes of Health Research (CIHR), Genome Canada
Health Research Board (Ireland)
Hilibrand Foundation (USA)
Medical Research Council (UK)
National Institutes of Health (USA)
Ontario Genomics Institute
University of Toronto McLaughlin Centre
Simons Foundation
Johns Hopkins
Autism Consortium of Boston
NLM Family foundation
National Institute of Health grants
National Health Medical Research Council
Scottish Rite
Spunk Fund, Inc.
Rebecca and Solomon Baker Fund
APEX Foundation
National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD)
endowment fund of the Nancy Pritzker Laboratory (Stanford)
Autism Society of America
Janet M. Grace Pervasive Developmental Disorders Fund
The Lundbeck Foundation
universities and university hospitals of Aarhus and Copenhagen
Stanley Foundation
Centers for Disease Control and Prevention (CDC)
Netherlands Scientific Organization
Dutch Brain Foundation
VU University Amsterdam
Trinity Centre for High Performance Computing through Science Foundation Ireland
Autism Genome Project (AGP) from Autism Speak
Longitudinal associations between television in the bedroom and body fatness in a UK cohort study.
OBJECTIVE: To assess longitudinal associations between screen-based media use (television (TV) and computer hours, having a TV in the bedroom) and body fatness among UK children. METHODS: Participants were 12 556 children from the UK Millennium Cohort Study who were followed from age 7 to age 11 years. Associations were assessed between screen-based media use and the following outcomes: body mass index (BMI), fat mass index (FMI), and overweight. RESULTS: In fully adjusted models, having a bedroom TV at age 7 years was associated with significantly higher BMI and FMI (excess BMI for boys=0.29, 95% confidence interval (CI) 0.06-0.52; excess BMI for girls=0.57, 95% CI 0.31-0.84; excess FMI for boys=0.20, 95% CI 0.04-0.37; excess FMI for girls=0.39, 95% CI 0.21-0.57) and increased risk of being overweight (relative risk (RR) for boys=1.21, 95% CI 1.07-1.36; RR for girls=1.31, 95% CI 1.15-1.48) at age 11 years, compared with having no bedroom TV. Hours spent watching TV or digital versatile disks were associated with increased risk of overweight among girls only. Computer use at age 7 years was not related to later body fatness for either gender. CONCLUSION: Having a TV in the child's bedroom was an independent risk factor for overweight and increased body fatness in this nationally representative sample of UK children. Childhood obesity prevention strategies should consider TVs in children's bedrooms as a risk factor for obesity.International Journal of Obesity advance online publication, 27 June 2017; doi:10.1038/ijo.2017.129
Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
GWAS for executive function and processing speed suggests involvement of the CADM2 gene
To identify common variants contributing to normal variation in two specific domains of cognitive functioning, we conducted a genome-wide association study (GWAS) of executive functioning and information processing speed in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing was available for 5429-32 070 subjects of European ancestry aged 45 years or older, free of dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects from 20 independent cohorts. A significant association was observed in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value=3.12 × 10(-8)) and in the joint discovery and replication meta-analysis (P-value=3.28 × 10(-9) after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of the major transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an alternative first exon. The variant is associated with expression of CADM2 in the cingulate cortex (P-value=4 × 10(-4)). The protein encoded by CADM2 is involved in glutamate signaling (P-value=7.22 × 10(-15)), gamma-aminobutyric acid (GABA) transport (P-value=1.36 × 10(-11)) and neuron cell-cell adhesion (P-value=1.48 × 10(-13)). Our findings suggest that genetic variation in the CADM2 gene is associated with individual differences in information processing speed.Molecular Psychiatry advance online publication, 14 April 2015; doi:10.1038/mp.2015.37
Large-scale proteome and metabolome analysis of CSF implicates altered glucose and carbon metabolism and succinylcarnitine in Alzheimer's disease
INTRODUCTION: A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest.
METHODS: We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation.
RESULTS: We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10−5) and 636 significant protein-biomarker associations (P < 6.07 × 10−6). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION: These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine–phosphorylated tau association
- …
