5,466 research outputs found

    Multi-element cylindrical electrostatic lens systems for focusing and controlling charged particles

    Full text link
    This paper describes theoretical modelling of electrostatic lenses based on 3, 4 and 5 closely spaced cylindrical electrodes, respectively. In each case, modelling is carried out numerically using commercial packages SIMION and LENSYS, and a variety of performance parameters are obtained. These include the magnification, the 3rd order spherical and chromatic aberration coefficients. Special cases such as zoom lens (i.e., lenses whose magnification may be changed without losing focus) are considered. Results are obtained as a function of the ratios of the electrode lengths and gaps, and as a function of ratios of the controlling voltages. As a result, it is shown that how a multi-element lens system can be operated with the whole focal properties in a useful mode for using in experimental studies.Comment: 20 pages, 15 figure

    Halo heating from fluctuating gas in a model dwarf

    Full text link
    The cold dark matter (CDM) structure formation scenario faces challenges on (sub)galactic scales, central among them being the `cusp-core' problem. A known remedy, driving CDM out of galactic centres, invokes interactions with baryons, through fluctuations in the gravitational potential arising from feedback or orbiting clumps of gas or stars. Here we interpret core formation in a hydrodynamic simulation in terms of a theoretical formulation, which may be considered a generalisation of Chandrasekhar's theory of two body relaxation to the case when the density fluctuations do not arise from white noise; it presents a simple characterisation of the effects of complex hydrodynamics and `subgrid physics'. The power spectrum of gaseous fluctuations is found to follow a power law over a range of scales, appropriate for a fully turbulent compressible medium. The potential fluctuations leading to core formation are nearly normally distributed, which allows for the energy transfer leading to core formation to be described as a standard diffusion process, initially increasing the velocity dispersion of test particles as in Chandrasekhar's theory. We calculate the energy transfer from the fluctuating gas to the halo and find it consistent with theoretical expectations. We also examine how the initial kinetic energy input to halo particles is redistributed to form a core. The temporal mass decrease inside the forming core may be fit by an exponential form; a simple prescription based on our model associates the characteristic timescale with an energy relaxation time. We compare the resulting theoretical density distribution with that in the simulation.Comment: 15 pages, 17 figures. Comments welcome

    Does the Fornax dwarf spheroidal have a central cusp or core?

    Full text link
    The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ~1 kpc from its centre. In a cuspy CDM halo the globulars would sink to the centre from their current positions within a few Gyrs, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius. We conclude that the Fornax dwarf spheroidal has a shallow inner density profile with a core radius constrained by the observed positions of its globular clusters. If the phase space density of the core is primordial then it implies a warm dark matter particle and gives an upper limit to its mass of ~0.5 keV, consistent with that required to significantly alleviate the substructure problem.Comment: 6 pages, 5 figures, accepted for publication in MNRAS, high resolution simulations include

    Effective action for strongly correlated electron systems

    Full text link
    The su(2|1) coherent-state path-integral representation of the partition function of the t - J model of strongly correlated electrons is derived at finite doping. The emergent effective action is compared to the one proposed earlier on phenomenological grounds by Shankar to describe holes in an antiferromagnet (Nucl.Phys. B330 (1990) 433). The t - J model effective action is found to have an important "extra" factor with no analogue in Shankar's action. It represents the local constraint of no double electron occupancy and reflects the rearrangement of the underlying phase-space manifold due to the presence of strong electron correlation. This important ingredient is shown to be essential to describe the physics of strongly correlated electron systems. Keywords: t - J model of strongly correlated electrons; su(2|1) coherent-state path integralComment: 22 page

    How supernova feedback turns dark matter cusps into cores

    Full text link
    We propose and successfully test against new cosmological simulations a novel analytical description of the physical processes associated with the origin of cored dark matter density profiles. In the simulations, the potential in the central kiloparsec changes on sub-dynamical timescales over the redshift interval 4 > z > 2 as repeated, energetic feedback generates large underdense bubbles of expanding gas from centrally-concentrated bursts of star formation. The model demonstrates how fluctuations in the central potential irreversibly transfer energy into collisionless particles, thus generating a dark matter core. A supply of gas undergoing collapse and rapid expansion is therefore the essential ingredient. The framework, based on a novel impulsive approximation, breaks with the reliance on adiabatic approximations which are inappropriate in the rapidly-changing limit. It shows that both outflows and galactic fountains can give rise to cusp-flattening, even when only a few per cent of the baryons form stars. Dwarf galaxies maintain their core to the present time. The model suggests that constant density dark matter cores will be generated in systems of a wide mass range if central starbursts or AGN phases are sufficiently frequent and energetic.Comment: 9 pages, 6 figures, accepted by MNRAS. No change in results. Expanded discussion and more reference

    The effects of baryon physics, black holes and AGN feedback on the mass distribution in clusters of galaxies

    Full text link
    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component, however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, then all results are compared to a hydrodynamical simulation which includes thermal AGN feedback from Super Massive Black Holes (SMBH). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z = 0 we find a flat density core of radius 10 kpc in both of the dark and stellar matter density profiles. We specu- late on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.Comment: Published on MNRAS - 13 pages, 4 tables, 9 figure

    Formation and evolution of dwarf galaxies in the CDM Universe

    Full text link
    We first review the results of the tidal stirring model for the transformation of gas-rich dwarf irregulars into dwarf spheroidals, which turns rotationally supported stellar systems into pressure supported ones. We emphasize the importance of the combined effect of ram pressure stripping and heating from the cosmic ultraviolet background in removing the gas and converting the object into a gas poor system as dSphs. We discuss how the timing of infall of dwarfs into the primary halo determines the final mass-to-light ratio and star formation history. Secondly we review the results of recent cosmological simulations of the formation of gas-rich dwarfs. These simulations are finally capable to produce a realistic object with no bulge, an exponential profile and a slowly rising rotation curve. The result owes to the inclusion of an inhomogeneous ISM and a star formation scheme based on regions having the typical density of molecular cloud complexes. Supernovae-driven winds become more effective in such mode, driving low angular momentum baryons outside the virial radius at high redshift and turning the dark matter cusp into a core. Finally we show the first tidal stirring experiments adopting dwarfs formed in cosmological simulations as initial conditions. The latter are gas dominated and have have turbulent thick gaseous and stellar disks disks that cannot develop strong bars, yet they are efficiently heated into spheroids by tidal shocks.Comment: 14 pages, 4 Figures, o appear in the proceedings of the CRAL conference, Lyon, June 2010, "A Universe of Dwarf Galaxies", eds. Philippe Prugniel & Mina Koleva; EDP Sciences in the European Astronomical Society Publications Series. (invited talk

    Collisional dark matter density profiles around supermassive black holes

    Full text link
    We solve the spherically symmetric time dependent relativistic Euler equations on a Schwarzschild background space-time for a perfect fluid, where the perfect fluid models the dark matter and the space-time background is that of a non-rotating supermassive black hole. We consider the fluid obeys an ideal gas equation of state as a simple model of dark matter with pressure. Assuming out of equilibrium initial conditions we search for late-time attractor type of solutions, which we found to show a constant accretion rate for the non-zero pressure case, that is, the pressure itself suffices to produce stationary accretion regimes. We then analyze the resulting density profile of such late-time solutions with the function A/rÎșA/r^{\kappa}. For different values of the adiabatic index we find different slopes of the density profile, and we study such profile in two regions: a region one near the black hole, located from the horizon up to 50MM and a region two from ∌800M\sim 800M up to ∌1500M\sim 1500M, which for a black hole of 109M⊙10^{9}M_{\odot} corresponds to ∌0.1\sim 0.1pc. The profile depends on the adiabatic index or equivalently on the pressure of the fluid and our findings are as follows: in the near region the density profile shows values of Îș<1.5\kappa <1.5 and in the limit of the pressure-less case Îș→1.5\kappa \rightarrow 1.5; on the other hand, in region two, the value of Îș<0.3\kappa<0.3 in all the cases we studied. If these results are to be applied to the dark matter problem, the conclusion is that, in the limit of pressure-less gas the density profile is cuspy only near the black hole and approaches a non-cuspy profile at bigger scales within 1pc. These results show on the one hand that pressure suffices to provide flat density profiles of dark matter and on the other hand show that the presence of a central black hole does not distort the density profile of dark matter at scales of 0.1pc.Comment: 7 pages, 8 eps figures, accepted for publication in MNRA

    Photon echo studies of photosynthetic light harvesting

    Get PDF
    The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here
    • 

    corecore