We first review the results of the tidal stirring model for the
transformation of gas-rich dwarf irregulars into dwarf spheroidals, which turns
rotationally supported stellar systems into pressure supported ones. We
emphasize the importance of the combined effect of ram pressure stripping and
heating from the cosmic ultraviolet background in removing the gas and
converting the object into a gas poor system as dSphs. We discuss how the
timing of infall of dwarfs into the primary halo determines the final
mass-to-light ratio and star formation history. Secondly we review the results
of recent cosmological simulations of the formation of gas-rich dwarfs. These
simulations are finally capable to produce a realistic object with no bulge, an
exponential profile and a slowly rising rotation curve. The result owes to the
inclusion of an inhomogeneous ISM and a star formation scheme based on regions
having the typical density of molecular cloud complexes. Supernovae-driven
winds become more effective in such mode, driving low angular momentum baryons
outside the virial radius at high redshift and turning the dark matter cusp
into a core. Finally we show the first tidal stirring experiments adopting
dwarfs formed in cosmological simulations as initial conditions. The latter are
gas dominated and have have turbulent thick gaseous and stellar disks disks
that cannot develop strong bars, yet they are efficiently heated into spheroids
by tidal shocks.Comment: 14 pages, 4 Figures, o appear in the proceedings of the CRAL
conference, Lyon, June 2010, "A Universe of Dwarf Galaxies", eds. Philippe
Prugniel & Mina Koleva; EDP Sciences in the European Astronomical Society
Publications Series. (invited talk