40 research outputs found

    Suppression of Lung Adenocarcinoma Progression by Nkx2-1

    Get PDF
    Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS and inactivation of the p53 pathway, using conditional alleles in mice. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras[superscript LSL-G12D/+];p53[superscript flox/flox] mice initiates lung adenocarcinoma development4. Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limitsmetastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga2. Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions ofNkx2-1 in the sametumourNational Institutes of Health (U.S.) (grant U01-CA84306 )National Institutes of Health (U.S.) (grant K99-CA151968)Howard Hughes Medical InstituteLudwig Center for Molecular OncologyNational Cancer Institute (U.S.) (Cancer Center Support (core) grant P30-CA14051

    A qualitative study of the determinants of dieting and non-dieting approaches in overweight/obese Australian adults

    Get PDF
    Background Dieting has historically been the main behavioural treatment paradigm for overweight/obesity, although a non-dieting paradigm has more recently emerged based on the criticisms of the original dieting approach. There is a dearth of research contrasting why these approaches are adopted. To address this, we conducted a qualitative investigation into the determinants of dieting and non-dieting approaches based on the perspectives and experiences of overweight/obese Australian adults. Methods Grounded theory was used inductively to generate a model of themes contrasting the determinants of dieting and non-dieting approaches based on the perspectives of 21 overweight/obese adults. Data was collected using semi-structured interviews to elicit in-depth individual experiences and perspectives. Results Several categories emerged which distinguished between the adoption of a dieting or non-dieting approach. These categories included the focus of each approach (weight/image or lifestyle/health behaviours); internal or external attributions about dieting failure; attitudes towards established diets, and personal autonomy. Personal autonomy was also influenced by another category; the perceived knowledge and self-efficacy about each approach, with adults more likely to choose an approach they knew more about and were confident in implementing. The time perspective of change (short or long-term) and the perceived identity of the person (fat/dieter or healthy person) also emerged as determinants of dieting or non-dieting approaches respectively. Conclusions The model of determinants elicited from this study assists in understanding why dieting and non-dieting approaches are adopted, from the perspectives and experiences of overweight/obese adults. Understanding this decision-making process can assist clinicians and public health researchers to design and tailor dieting and non-dieting interventions to population subgroups that have preferences and characteristics suitable for each approach

    Siah-1b is a direct transcriptional target of p53: Identification of the functional p53 responsive element in the siah-1b promoter

    No full text
    Siah proteins are E3 ubiquitin ligases. They are homologues of the Drosophila seven in absentia (Sina), a protein required for the R7 photoreceptor development. We have previously found that the expression of human siah-1 and its mouse homologue siah-1b are induced by p53 during apoptosis and tumor reversion. So far, no evidence that the siah-1b gene is a direct transcriptional target of p53 has been provided. In the present study we investigate this issue. Northern blot analysis with a specific probe demonstrates an increase in siah-1b transcription on activation of endogenous and inducible exogenous p53. To explore whether this effect is directly mediated by p53 we analyzed 20 kb of chromosome X DNA, containing the siah-1b locus. A p53-binding site was identified in the siah-1b promoter, located at nucleotides -2155/-2103 relative to the translational start site. This site is composed of two half-sites, conforming to the p53-binding consensus sequence but separated by a nonclassical 33-bp spacer. In luciferase assays, p53 induces a substantial increase in siah-1b promoter activity. Gel shift and DNase-I-footprinting studies, combined with mutational analysis and chromatin immunoprecipitation, indicate that p53 effectively binds the siah-1b promoter in vitro and in vivo. Thus, the siah-1b gene is a direct transcriptional target of p53

    Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence

    No full text
    A variety of tumor-suppressor mechanisms exist to promote genome integrity and organismal survival. One such mechanism is cellular senescence. In response to replicative aging, DNA damage, and oncogenic stimuli, the p53 and Rb pathways are activated to prevent the proliferation of damaged cells by inducing senescence or apoptosis. We have performed a loss-of-function genetic screen in primary human cells to identify components of the senescence machinery. Here we describe BRD7 and BAF180 as unique regulators of replicative senescence in human cells. Both regulate p53 transcriptional activity toward a subset of its target genes required for replicative and oncogenic stress senescence induction, and BRD7 physically interacts with p53. BRD7 is a deletion target in human cancer, suggesting that loss of BRD7 may provide an additional mechanism to antagonize p53 function in cancer cells
    corecore