64 research outputs found

    Epidemics on contact networks: a general stochastic approach

    Full text link
    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible (SIS) and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material (included): 6 pages, 1 tabl

    Off the Couch and Onto the Streets: Toward an Ethnographic Psychoanalysis

    Get PDF
    Psychoanalysis has much to gain by incorporating ethnographic methods into its repertoire. Recent works in ethnographic psychoanalysis demonstrate how psychoanalysis stands to function better as both community intervention and participatory action research. This article describes the historical convergence between psychoanalysis and cultural anthropology and situates ethnographic psychoanalysis within interdisciplinary theory and practice

    DAG-informed regression modelling, agent-based modelling, and microsimulation modelling: A critical comparison of methods for causal inference

    Get PDF
    The current paradigm for causal inference in epidemiology relies primarily on the evaluation of counterfactual contrasts via statistical regression models informed by graphical causal models (often in the form of directed acyclic graphs, or DAGs) and their underlying mathematical theory. However, there have been growing calls for supplementary methods, and one such method that has been proposed is agent-based modelling due to its potential for simulating counterfactuals. However, within the epidemiological literature there currently exists a general lack of clarity regarding what exactly agent-based modelling is (and is not) and, importantly, how it differs from microsimulation modelling – perhaps its closest methodological comparator. We clarify this distinction by briefly reviewing the history of each method, which provides context for their similarities and differences, and casts light on the types of research questions that they have evolved (and thus are well-suited) to answering; we do the same for DAG-informed regression methods. The distinct historical evolutions of DAG-informed regression modelling, microsimulation modelling, and agent-based modelling have given rise to distinct features of the methods themselves, and provide a foundation for critical comparison. Not only are the three methods well-suited to addressing different types of causal questions, but in doing so they place differing levels of emphasis on fixed and random effects, and also tend to operate on different timescales and in different timeframes

    Mechanism of cellular rejection in transplantation

    Get PDF
    The explosion of new discoveries in the field of immunology has provided new insights into mechanisms that promote an immune response directed against a transplanted organ. Central to the allograft response are T lymphocytes. This review summarizes the current literature on allorecognition, costimulation, memory T cells, T cell migration, and their role in both acute and chronic graft destruction. An in depth understanding of the cellular mechanisms that result in both acute and chronic allograft rejection will provide new strategies and targeted therapeutics capable of inducing long-lasting, allograft-specific tolerance

    Otolaryngology in Critical Care

    No full text
    Diseases affecting the ear, nose, and throat are prevalent in intensive care settings and often require combined medical and surgical management. Upper airway occlusion can occur as a result of malignant tumor growth, allergic reactions, and bleeding events and may require close monitoring and interventions by intensivists, sometimes necessitating surgical management. With the increased prevalence of immunocompromised patients, aggressive infections of the head and neck likewise require prompt recognition and treatment. In addition, procedure-specific complications of major otolaryngologic procedures can be highly morbid, necessitating vigilant postoperative monitoring. For optimal outcomes, intensivists need a broad understanding of the pathophysiology and management of life-threatening otolaryngologic disease

    Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response

    No full text
    Plant water relations are critical for determining the distribution, persistence, and fitness of plant species. Studying the genetic basis of ecologically relevant traits, however, can be complicated by their complex genetic, physiological, and developmental basis and their interaction with the environment. Water use efficiency (WUE), the ratio of photosynthetic carbon assimilation to stomatal conductance to water, is a dynamic trait with tremendous ecological and agricultural importance whose genetic control is poorly understood. In the present study, we use a quantitative trait locus-mapping approach to locate, fine-map, clone, confirm, and characterize an allelic substitution that drives differences in WUE among natural accessions of Arabidopsis thaliana. We show that a single amino acid substitution in an abscisic acid-responsive kinase, AtMPK12, causes reduction in WUE, and we confirm its functional role using transgenics. We further demonstrate that natural alleles at AtMPK12 differ in their response to cellular and environmental cues, with the allele from the Cape Verde Islands (CVI) being less responsive to hormonal inhibition of stomatal opening and more responsive to short-term changes in vapor pressure deficit. We also show that the CVI allele results in constitutively larger stomata. Together, these differences cause higher stomatal conductance and lower WUE compared with the common allele. These physiological changes resulted in reduced whole-plant transpiration efficiency and reduced fitness under water-limited compared with well-watered conditions. Our work demonstrates how detailed analysis of naturally segregating functional variation can uncover the molecular and physiological basis of a key trait associated with plant performance in ecological and agricultural settings
    corecore