49 research outputs found

    Moment-based parameter estimation in binomial random intersection graph models

    Full text link
    Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of n0n_0 nodes sampled from the full set of nn nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for n0n2/31n_0 \gg n^{2/3} \gg 1. As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure

    The Value of Information in Selfish Routing

    Full text link
    Path selection by selfish agents has traditionally been studied by comparing social optima and equilibria in the Wardrop model, i.e., by investigating the Price of Anarchy in selfish routing. In this work, we refine and extend the traditional selfish-routing model in order to answer questions that arise in emerging path-aware Internet architectures. The model enables us to characterize the impact of different degrees of congestion information that users possess. Furthermore, it allows us to analytically quantify the impact of selfish routing, not only on users, but also on network operators. Based on our model, we show that the cost of selfish routing depends on the network topology, the perspective (users versus network operators), and the information that users have. Surprisingly, we show analytically and empirically that less information tends to lower the Price of Anarchy, almost to the optimum. Our results hence suggest that selfish routing has modest social cost even without the dissemination of path-load information.Comment: 27th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2020

    Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years

    Full text link
    [EN] Research collaboration is necessary, rewarding, and beneficial. Cohesion between team members is related to their collective efficiency. To assess collaboration processes and their eventual outcomes, agencies need innovative methods-and social network approaches are emerging as a useful analytical tool. We identified the research output and citation data of a network of 61 research groups formally engaged in publishing rare disease research between 2000 and 2013. We drew the collaboration networks for each year and computed the global and local measures throughout the period. Although global network measures remained steady over the whole period, the local and subgroup metrics revealed a growing cohesion between the teams. Transitivity and density showed little or no variation throughout the period. In contrast the following points indicated an evolution towards greater network cohesion: the emergence of a giant component (which grew from just 30 % to reach 85 % of groups); the decreasing number of communities (following a tripling in the average number of members); the growing number of fully connected subgroups; and increasing average strength. Moreover, assortativity measures reveal that, after an initial period where subject affinity and a common geographical location played some role in favouring the connection between groups, the collaboration was driven in the final stages by other factors and complementarities. The Spanish research network on rare diseases has evolved towards a growing cohesion-as revealed by local and subgroup metrics following social network analysis.The Spanish Ministry of Economics and Competitiveness partially supported this research (Grant Number ECO2014-59381-R).Benito Amat, C.; Perruchas, F. (2016). Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years. Scientometrics. 108(1):41-56. https://doi.org/10.1007/s11192-016-1952-zS41561081Aymé, S., & Schmidtke, J. (2007). Networking for rare diseases: A necessity for Europe. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 50(12), 1477–1483. doi: 10.1007/s00103-007-0381-9 .Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614. doi: 10.1016/S0378-4371(02)00736-7 .Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (2009). Scientific discovery and topological transitions in collaboration networks. Journal of Informetrics, 3(3), 210–221. doi: 10.1016/j.joi.2009.03.001 .Bian, J., Xie, M., Topaloglu, U., Hudson, T., Eswaran, H., & Hogan, W. (2014). Social network analysis of biomedical research collaboration networks in a CTSA institution. Journal of Biomedical Informatics, 52, 130–140. doi: 10.1016/j.jbi.2014.01.015 .Bordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135–144. doi: 10.1016/j.joi.2014.12.001 .Börner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67. doi: 10.1002/cplx.20078 .Casey-Campbell, M., & Martens, M. L. (2009). Sticking it all together: A critical assessment of the group cohesion–performance literature. International Journal of Management Reviews, 11(2), 223–246. doi: 10.1111/j.1468-2370.2008.00239.x .Chiocchio, F., & Essiembre, H. (2009). Cohesion and performance: A meta-analytic review of disparities between project teams, Production teams, and service teams. Small group research, 40(4), 382–420. doi: 10.1177/1046496409335103 .Cho, A. (2011). Particle physicists’ new extreme teams. Science, 333(6049), 1564–1567. doi: 10.1126/science.333.6049.1564 .Cooke, N. J., & Hilton, M. L. (2015). Enhancing the effectiveness of team science. Washington, D.C.: National Academies Press. Recuperado a partir de http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science .Cugmas, M., Ferligoj, A., & Kronegger, L. (2015). The stability of co-authorship structures. Scientometrics, 106(1), 163–186. doi: 10.1007/s11192-015-1790-4 .Estrada, E. (2011). The structure of complex networks: Theory and applications. Oxford: University Press.Gallivan, M., & Ahuja, M. (2015). Co-authorship, homophily, and scholarly influence in information systems research. Journal of the Association for Information Systems, 16(12), 980.Ghosh, J., Kshitij, A., & Kadyan, S. (2014). Functional information characteristics of large-scale research collaboration: Network measures and implications. Scientometrics, 102(2), 1207–1239. doi: 10.1007/s11192-014-1475-4 .Heymann, S. (2014). Gephi. In R. Alhajj & J. Rokne (Eds.), Encyclopedia of social network analysis and mining (pp. 612–625). New York: Springer.Himmelstein, D. S., & Powell, K. (2016). Analysis for “the history of publishing delays” blog post v1.0. Zenodo,. doi: 10.5281/zenodo.45516 .Hunt, J. D., Whipple, E. C., & McGowan, J. J. (2012). Use of social network analysis tools to validate a resources infrastructure for interinstitutional translational research: A case study. Journal of the Medical Library Association, 100(1), 48–54. doi: 10.3163/1536-5050.100.1.009 .Kolaczyk, E. D., & Csardi, G. (2014). Statistical analysis of network data with R (Vol. 65). New York: Springer.Kumar, S. (2015). Efficacy of a giant component in co-authorship networks: Evidence from a Southeast Asian dataset in economics. Aslib Journal of Information Management, 68(1), 19–32. doi: 10.1108/AJIM-12-2014-0172 .Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323–1332. doi: 10.1002/asi.23266 .Laudel, G. (2002). What do we measure by co-authorships? Research Evaluation, 11(1), 3–15. doi: 10.3152/147154402781776961 .Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480. doi: 10.1016/j.ipm.2005.03.012 .Liu, P., & Xia, H. (2015). Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics, 103(1), 101–134. doi: 10.1007/s11192-014-1525-y .Ministerio de Sanidad y Consumo. Resolución de 30 de marzo de. (2006) del Instituto de Salud Carlos III, por la que se convocan ayudas destinadas a financiar estructuras estables de investigación cooperativa, en el área de biomedicina y ciencias de la salud, en el marco de la iniciativa Ingenio 2010, programa Consolider, acciones CIBER, 83 Boletín Oficial del Estado (pp. 13770–13777).Newman, M. E. J. (2001a). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132. doi: 10.1103/PhysRevE.64.016132 .Newman, M. E. J. (2001b). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. doi: 10.1103/PhysRevE.64.016131 .Newman, M. E. J. (2003a). Mixing patterns in networks. Physical Review E, 67(2), 026126. doi: 10.1103/PhysRevE.67.026126 .Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review, 45, 167–256.OECD. (2010). Measuring innovation: A new perspective. Paris: OCDE Publishing.Ramasco, J., & Morris, S. (2006). Social inertia in collaboration networks. Physical Review E, 73(1), 016122. doi: 10.1103/PhysRevE.73.016122 .Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681. doi: 10.1002/aris.2007.1440410121 .Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039. doi: 10.1126/science.1136099

    Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to Trade in Livestock Markets?

    Get PDF
    Proximity and affiliation to the local market appear to be two of the most relevant factors to explain farmer's choices to select a particular trading point. Physical barriers may limit the options , especially in developing countries. A network of villages linked by traders/farmer-traders sharing livestock markets was built with field data collected in 75 villages from 8 kebelles in the Wassona Werna wereda of the Ethiopian Highlands. Two exponential random graph models were fitted with various geographical and demographic attributes of the nodes (dyadic independent model) and three internal network structures (dyadic dependent model). Several diagnostic methods were applied to assess the goodness of fit of the models. The odds of an edge where the distance to the main market Debre Behran and the difference in altitude between two connected villages are both large increases significantly so that villages far away from the main market and at different altitude are more likely to be linked in the network than randomly. The odds of forming an edge between two villages in Abamote or Gudoberet kebelles are approximately 75% lower than an edge between villages in any other kebelles (p<0.05). The conditional log-odds of two villages forming a tie that is not included in a triangle, a 2-star or a 3-star is extremely low, increasing the odds significantly (p<0.05) each time a node is in a 2-star structure and decreasing it when a node is in a 3-star (p<0.05) or in a triangle formation (p<0.05)), conditional on the rest of the network. Two major constraining factors, namely distance and altitude, are not deterrent for the potential contact of susceptible small ruminant populations in the Highlands of Ethiopia

    Estimation of metabolite networks with regard to a specific covariable: applications to plant and human data

    Get PDF
    In systems biology, where a main goal is acquiring knowledge of biological systems, one of the challenges is inferring biochemical interactions from different molecular entities such as metabolites. In this area, the metabolome possesses a unique place for reflecting “true exposure” by being sensitive to variation coming from genetics, time, and environmental stimuli. While influenced by many different reactions, often the research interest needs to be focused on variation coming from a certain source, i.e. a certain covariable Xm . Objective Here, we use network analysis methods to recover a set of metabolite relationships, by finding metabolites sharing a similar relation to Xm . Metabolite values are based on information coming from individuals’ Xm status which might interact with other covariables. Methods Alternative to using the original metabolite values, the total information is decomposed by utilizing a linear regression model and the part relevant to Xm is further used. For two datasets, two different network estimation methods are considered. The first is weighted gene co-expression network analysis based on correlation coefficients. The second method is graphical LASSO based on partial correlations. Results We observed that when using the parts related to the specific covariable of interest, resulting estimated networks display higher interconnectedness. Additionally, several groups of biologically associated metabolites (very large density lipoproteins, lipoproteins, etc.) were identified in the human data example. Conclusions This work demonstrates how information on the study design can be incorporated to estimate metabolite networks. As a result, sets of interconnected metabolites can be clustered together with respect to their relation to a covariable of interest

    Role detection in online forums based on growth models for trees

    No full text
    International audienceSome structural characteristics of online discussions have been successfully modeled in the recent years. When parameters of these models are properly estimated, the models are able to generate synthetic discussions that are structurally similar to the real discussions. A common aspect of these models is that they consider that all users behave according to the same model. In this paper, we combine a growth-model with an Expectation-Maximization algorithm that finds different parameters for different latent groups of users. We use this method to find the different roles that coexist in the community. Moreover, we analyze whether we can predict users behaviors based on their roles. Indeed, we show that predictions are improved for some of the roles when compared with a simple growth model
    corecore