370 research outputs found

    Improved precision on the experimental E0 decay branching ratio of the Hoyle state

    Get PDF
    Stellar carbon synthesis occurs exclusively via the 3Ξ±3\alpha process, in which three Ξ±\alpha particles fuse to form 12^{12}C in the excited Hoyle state, followed by electromagnetic decay to the ground state. The Hoyle state is above the Ξ±\alpha threshold, and the rate of stellar carbon production depends on the radiative width of this state. The radiative width cannot be measured directly, and must instead be deduced by combining three separately measured quantities. One of these quantities is the E0E0 decay branching ratio of the Hoyle state, and the current 1010\% uncertainty on the radiative width stems mainly from the uncertainty on this ratio. The E0E0 branching ratio was deduced from a series of pair conversion measurements of the E0E0 and E2E2 transitions depopulating the 02+0^+_2 Hoyle state and 21+2^+_1 state in 12^{12}C, respectively. The excited states were populated by the 12^{12}C(p,pβ€²)(p,p^\prime) reaction at 10.5 MeV beam energy, and the pairs were detected with the electron-positron pair spectrometer, Super-e, at the Australian National University. The deduced branching ratio required knowledge of the proton population of the two states, as well as the alignment of the 21+2^+_1 state in the reaction. For this purpose, proton scattering and Ξ³\gamma-ray angular distribution experiments were also performed. An E0E0 branching ratio of ΓπE0/Ξ“=8.2(5)Γ—10βˆ’6\Gamma^{E0}_{\pi}/\Gamma=8.2(5)\times10^{-6} was deduced in the current work, and an adopted value of ΓπE0/Ξ“=7.6(4)Γ—10βˆ’6\Gamma^{E0}_{\pi}/\Gamma=7.6(4)\times10^{-6} is recommended based on a weighted average of previous literature values and the new result. The new recommended value for the E0E0 branching ratio is about 14% larger than the previous adopted value of ΓπE0/Ξ“=6.7(6)Γ—10βˆ’6\Gamma^{E0}_{\pi}/\Gamma=6.7(6)\times10^{-6}, while the uncertainty has been reduced from 9% to 5%.Comment: Accepted for publication as a Regular Article in Phys. Rev. C on July 29 202

    Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management

    Full text link
    [EN] The use of Sustainable Drainage Systems (SUDS) to manage urban runoff and contribute to environmental and landscape improvement is now widely known, but its application is still limited in many regions, like in Mediterranean countries. In addition, there is a lack of Decision Support Tools that consider all their benefits in the decision making process in a clear and integrated holistic way. In this paper, the (ESTORMED)-S-2 Decision Support Tool is presented. This tool analyses the impact of stormwater management in the urban environment and introduces energetic and environmental criteria in the decision making process. Therefore, it aims to fill in the existing "gap" between SuDS manuals and guidelines and regional and local decision makers, since it quantifies SuDS benefits and includes them in the comparison of different stormwater scenarios. Finally, the results of applying this tool to compare drainage infrastructures in a real urban development are described. (C) 2016 Elsevier Ltd. All rights reserved.The E2STORMED project (Reference: 1C-MED12-14), within which the Decision Support Tool described in this paper has been developed, was funded by the MED Programme of the European Union. Authors would also like to express their gratitude to the E2STORMED project partners for their assistance and collaboration in this work.Morales Torres, A.; Escuder Bueno, I.; AndrΓ©s DomΓ©nech, I.; Perales Momparler, S. (2016). Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Environmental Modelling & Software. 84:518-528. doi:10.1016/j.envsoft.2016.07.019S5185288

    Odor Fear Conditioning Modifies Piriform Cortex Local Field Potentials Both during Conditioning and during Post-Conditioning Sleep

    Get PDF
    BACKGROUND: Sleep plays an active role in memory consolidation. Sleep structure (REM/Slow wave activity [SWS]) can be modified after learning, and in some cortical circuits, sleep is associated with replay of the learned experience. While the majority of this work has focused on neocortical and hippocampal circuits, the olfactory system may offer unique advantages as a model system for exploring sleep and memory, given the short, non-thalamic pathway from nose to primary olfactory (piriform cortex), and rapid cortex-dependent odor learning. METHODOLOGY/PRINCIPAL FINDINGS: We examined piriform cortical odor responses using local field potentials (LFPs) from freely behaving Long-Evans hooded rats over the sleep-wake cycle, and the neuronal modifications that occurred within the piriform cortex both during and after odor-fear conditioning. We also recorded LFPs from naΓ―ve animals to characterize sleep activity in the piriform cortex and to analyze transient odor-evoked cortical responses during different sleep stages. NaΓ―ve rats in their home cages spent 40% of their time in SWS, during which the piriform cortex was significantly hypo-responsive to odor stimulation compared to awake and REM sleep states. Rats trained in the paired odor-shock conditioning paradigm developed enhanced conditioned odor evoked gamma frequency activity in the piriform cortex over the course of training compared to pseudo-conditioned rats. Furthermore, conditioned rats spent significantly more time in SWS immediately post-training both compared to pre-training days and compared to pseudo-conditioned rats. The increase in SWS immediately after training significantly correlated with the duration of odor-evoked freezing the following day. CONCLUSIONS/SIGNIFICANCE: The rat piriform cortex is hypo-responsive to odors during SWS which accounts for nearly 40% of each 24 hour period. The duration of slow-wave activity in the piriform cortex is enhanced immediately post-conditioning, and this increase is significantly correlated with subsequent memory performance. Together, these results suggest the piriform cortex may go offline during SWS to facilitate consolidation of learned odors with reduced external interference

    Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii

    Get PDF
    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 ΞΌM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii

    Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014-2015 Holuhraun eruption (Iceland)

    Get PDF
    The 2014-2015 Holuhraun eruption in Iceland, emitted ~11 Tg of SO2 into the troposphere over 6 months, and caused one of the most intense and widespread volcanogenic air pollution events in centuries. This study provides a number of source terms for characterisation of plumes in large fissure eruptions, in Iceland and elsewhere. We characterised the chemistry of aerosol particle matter (PM) and gas in the Holuhraun plume, and its evolution as the plume dispersed, both via measurements and modelling. The plume was sampled at the eruptive vent, and in two populated areas in Iceland. The plume caused repeated air pollution events, exceeding hourly air quality standards (350 Β΅g/m3) for SO2 on 88 occasions in ReykjahlΓ­Γ° town (100 km distance), and 34 occasions in ReykjavΓ­k capital area (250 km distance). Average daily concentration of volcanogenic PM sulphate exceeded 5 Β΅g/m3 on 30 days in ReykjavΓ­k capital area, which is the maximum concentration measured during non-eruptive background interval. There are currently no established air quality standards for sulphate. Combining the results from direct sampling and dispersion modelling, we identified two types of plume impacting the downwind populated areas. The first type was characterised by high concentrations of both SO2 and S-bearing PM, with a high Sgas/SPM mass ratio (SO2(g)/SO42-(PM) >10). The second type had a low Sgas/SPM ratio (<10). We suggest that this second type was a mature plume where sulphur had undergone significant gas-to-aerosol conversion in the atmosphere. Both types of plume were rich in fine aerosol (predominantly PM1 and PM2.5), sulphate (on average ~90% of the PM mass) and various trace species, including heavy metals. The fine size of the volcanic PM mass (75-80% in PM2.5), and the high environmental lability of its chemical components have potential adverse implications for environmental and health impacts. However, only the dispersion of volcanic SO2 was forecast in public warnings and operationally monitored during the eruption. We make a recommendation that sulphur gas-to-aerosol conversion processes, and a sufficiently large model domain to contain the transport of a tropospheric plume on the timescale of days be utilized for public health and environmental impact forecasting in future eruptions in Iceland and elsewhere in the world

    Salmonella Type III Effector AvrA Stabilizes Cell Tight Junctions to Inhibit Inflammation in Intestinal Epithelial Cells

    Get PDF
    Salmonella Typhimurium is a major cause of human gastroenteritis. The Salmonella type III secretory system secretes virulence proteins, called effectors. Effectors are responsible for the alteration of tight junction (TJ) structure and function in intestinal epithelial cells. AvrA is a newly described bacterial effector found in Salmonella. We report here that AvrA expression stabilizes cell permeability and tight junctions in intestinal epithelial cells. Cells colonized with an AvrA-deficient bacterial strain (AvrAβˆ’) displayed decreased cell permeability, disruption of TJs, and an increased inflammatory response. Western blot data showed that TJ proteins, such as ZO-1, claudin-1, decreased after AvrA- colonization for only 1 hour. In contrast, cells colonized with AvrA-sufficient bacteria maintained cell permeability with stabilized TJ structure. This difference was confirmed in vivo. Fluorescent tracer studies showed increased fluorescence in the blood of mice infected with AvrA- compared to those infected with the AvrA-sufficient strains. AvrA- disrupted TJ structure and function and increased inflammation in vivo, compared to the AvrA- sufficient strain. Additionally, AvrA overexpression increased TJ protein expression when transfected into colonic epithelial cells. An intriguing aspect of this study is that AvrA stabilized TJs, even though the other TTSS proteins, SopB, SopE, and SopE2, are known to disrupt TJs. AvrA may play a role in stabilizing TJs and balancing the opposing action of other bacterial effectors. Our findings indicate an important role for the bacterial effector AvrA in regulation of intestinal epithelial cell TJs during inflammation. The role of AvrA represents a highly refined bacterial strategy that helps the bacteria survive in the host and dampen the inflammatory response

    Whole Genome Sequencing Reveals Local Transmission Patterns of Mycobacterium bovis in Sympatric Cattle and Badger Populations

    Get PDF
    Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled &lsquo;reservoir' host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers

    An Essential Role of the Cytoplasmic Tail of CXCR4 in G-Protein Signaling and Organogenesis

    Get PDF
    CXCR4 regulates cell proliferation, enhances cell survival and induces chemotaxis, yet molecular mechanisms underlying its signaling remain elusive. Like all other G-protein coupled receptors (GPCRs), CXCR4 delivers signals through G-protein-dependent and -independent pathways, the latter involving its serine-rich cytoplasmic tail. To evaluate the signaling and biological contribution of this G-protein-independent pathway, we generated mutant mice that express cytoplasmic tail-truncated CXCR4 (Ξ”T) by a gene knock-in approach. We found that Ξ”T mice exhibited multiple developmental defects, with not only G-protein-independent but also G-protein-dependent signaling events completely abolished, despite Ξ”T's ability to still associate with G-proteins. These results reveal an essential positive regulatory role of the cytoplasmic tail in CXCR4 signaling and suggest the tail is crucial for mediating G-protein activation and initiating crosstalk between G-protein-dependent and G-protein-independent pathways for correct GPCR signaling
    • …
    corecore