105 research outputs found

    BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival

    Get PDF
    B cell activating factor (BAFF) stimulation of the BAFF receptor (BAFF-R) is essential for the homeostatic survival of mature B cells. Earlier in vitro experiments with inhibitors that block MEK 1 and 2 suggested that activation of ERK 1 and 2 MAP kinases is required for BAFF-R to promote B cell survival. However, these inhibitors are now known to also inhibit MEK5, which activates the related MAP kinase ERK5. In the present study, we demonstrated that BAFF-induced B cell survival was actually independent of ERK1/2 activation but required ERK5 activation. Consistent with this, we showed that conditional deletion of ERK5 in B cells led to a pronounced global reduction in mature B2 B cell numbers, which correlated with impaired survival of ERK5-deficient B cells after BAFF stimulation. ERK5 was required for optimal BAFF up-regulation of Mcl1 and Bcl2a1, which are prosurvival members of the Bcl-2 family. However, ERK5 deficiency did not alter BAFF activation of the PI3-kinase-Akt or NF-κB signaling pathways, which are also important for BAFF to promote mature B cell survival. Our study reveals a critical role for the MEK5-ERK5 MAP kinase signaling pathway in BAFF-induced mature B cell survival and homeostatic maintenance of B2 cell numbers

    BAFF signaling in health and disease.

    Get PDF
    BAFF is a critical cytokine supporting the survival of mature naïve B cells, acting through the BAFFR receptor. Recent studies show that BAFF and BAFFR are also required for the survival of memory B cells, autoimmune B cells as well as malignant chronic lymphocytic leukaemia (CLL) cells. BAFFR cooperates with other receptors, notably the B cell antigen receptor (BCR), a process which is critical for the expansion of autoimmune and CLL cells. This crosstalk may be mediated by TRAF3 which interacts with BAFFR and with CD79A, a signalling subunit of the BCR and the downstream SYK kinase, inhibiting its activity. BAFF binding to BAFFR leads to degradation of TRAF3 which may relieve inhibition of SYK activity transducing signals to pathways required for B cell survival. BAFFR activates both canonical and non-canonical NF-κB signalling and both pathways play important roles in the survival of B cells and CLL cells

    Syk tyrosine kinase is critical for B cell antibody responses and memory B cell survival

    Get PDF
    Signals from the BCR are required for Ag-specific B cell recruitment into the immune response. Binding of Ag to the BCR induces phosphorylation of immune receptor tyrosine-based activation motifs in the cytoplasmic domains of the CD79a and CD79b signaling subunits, which subsequently bind and activate the Syk protein tyrosine kinase. Earlier work with the DT40 chicken B cell leukemia cell line showed that Syk was required to transduce BCR signals to proximal activation events, suggesting that Syk also plays an important role in the activation and differentiation of primary B cells during an immune response. In this study, we show that Syk-deficient primary mouse B cells have a severe defect in BCR-induced activation, proliferation, and survival. Furthermore, we demonstrate that Syk is required for both T-dependent and T-independent Ab responses, and that this requirement is B cell intrinsic. In the absence of Syk, Ag fails to induce differentiation of naive B cells into germinal center B cells and plasma cells. Finally, we show that the survival of existing memory B cells is dependent on Syk. These experiments demonstrate that Syk plays a critical role in multiple aspects of B cell Ab responses

    Cancer vaccines: the interleukin 2 dosage effect.

    Full text link

    Rapid CD4⁺ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9

    Get PDF
    Toll‐like receptors (TLRs) can recognize microbial patterns and utilize adaptor molecules, such as‐MyD88 or (TRIF TIR‐domain‐containing adapter‐inducing interferon‐β), to initiate downstream signaling that ultimately affects the initiation of adaptive immunity. In addition to this inflammatory role, TLR5 expression on dendritic cells can favor antigen presentation of flagellin peptides and thus increase the sensitivity of flagellin‐specific T‐cell responses in vitro and in vivo. Here, we examined the role of alternative signaling pathways that might regulate flagellin antigen presentation in addition to MyD88. These studies suggest a requirement for spleen tyrosine kinase, a noncanonical TLR‐signaling adaptor molecule, and its downstream molecule CARD9 in regulating the sensitivity of flagellin‐specific CD4⁺ T‐cell responses in vitro and in vivo. Thus, a previously unappreciated signaling pathway plays an important role in regulating the dominance of flagellin‐specific T‐cell responses

    Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection

    Get PDF
    Innate immune cells detect pathogens via pattern recognition receptors (PRRs), which signal for initiation of immune responses to infection. Studies with Dectin-1, a PRR for fungi, have defined a novel innate signaling pathway involving Syk kinase and the adaptor CARD9, which is critical for inducing Th17 responses to fungal infection. We show that another C-type lectin, Dectin-2, also signals via Syk and CARD9, and contributes to dendritic cell (DC) activation by fungal particles. Unlike Dectin-1, Dectin-2 couples to Syk indirectly, through association with the FcRγ chain. In a model of Candida albicans infection, blockade of Dectin-2 did not affect innate immune resistance but abrogated Candida-specific T cell production of IL-17 and, in combination with the absence of Dectin-1, decreased Th1 responses to the organism. Thus, Dectin-2 constitutes a major fungal PRR that can couple to the Syk–CARD9 innate signaling pathway to activate DCs and regulate adaptive immune responses to fungal infection

    PI3K Signaling in Normal B Cells and Chronic Lymphocytic Leukemia (CLL).

    Get PDF
    B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3K s in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases

    Full text link
    In activated mouse natural killer (NK) cells, the NKG2D receptor associates with two intracellular adaptors, DAP10 and DAP12, which trigger phosphatidyl inositol 3 kinase (PI3K) and Syk family protein tyrosine kinases, respectively. Here we show that cytotoxicity, but not cytokine production, is triggered by NKG2D in activated NK cells lacking either DAP12 or the Syk family members Syk and ZAP70. Inhibition of PI3K blocks this cytotoxicity, suggesting that the DAP10-PI3K pathway is sufficient to initiate NKG2D-mediated killing of target cells. Our results highlight signaling divergence in the effector functions of NKG2D and indicate that alternative associations between a receptor and its adaptors may provide a single receptor with a dual 'on-switch', giving mouse NK cells more choices through which to trigger cytotoxicity
    corecore