69 research outputs found
Cosmological Constraints from Strong Gravitational Lensing in Galaxy Clusters
Current efforts in observational cosmology are focused on characterizing the
mass-energy content of the Universe. We present results from a geometric test
based on strong lensing in galaxy clusters. Based on Hubble Space Telescope
images and extensive ground-based spectroscopic follow-up of the massive galaxy
cluster Abell 1689, we used a parametric model to simultaneously constrain the
cluster mass distribution and dark energy equation of state. Combining our
cosmological constraints with those from X-ray clusters and the Wilkinson
Microwave Anisotropy Probe 5-year data gives {\Omega}m = 0.25 +/- 0.05 and wx =
-0.97 +/- 0.07 which are consistent with results from other methods. Inclusion
of our method with all other techniques available brings down the current
2{\sigma} contours on the dark energy equation of state parameter wx by about
30%.Comment: 32 pages, 8 figures, includes Supplementary Online Material.
Published by Science on August 20, 201
Scalar-field quintessence by cosmic shear: CFHT data analysis and forecasts for DUNE
A light scalar field, minimally or not-minimally coupled to the metric field,
is a well-defined candidate for the dark energy, overcoming the coincidence
problem intrinsic to the cosmological constant and avoiding the difficulties of
parameterizations. We present a general description of the weak gravitational
lensing valid for every metric theory of gravity, including vector and tensor
perturbations for a non-flat spatial metric. Based on this description, we
investigate two minimally-coupled scalar field quintessence models using
VIRMOS-Descart and CFHTLS cosmic shear data, and forecast the constraints for
the proposed space-borne wide-field imager DUNE.Comment: 7 pages, 4 figures. To appear in proceedings of IRGAC06 (Barcelona,
July 06
Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis
The baryon acoustic oscillation (BAO) feature in the two-point correlation
function of galaxies supplies a standard ruler to probe the expansion history
of the Universe. We study here several galaxy selection schemes, aiming at
building an emission-line galaxy (ELG) sample in the redshift range
, that would be suitable for future BAO studies, providing a highly
biased galaxy sample. We analyse the angular galaxy clustering of galaxy
selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this
analysis with a halo occupation distribution (HOD) model to derive the
properties of the haloes these galaxies inhabit, in particular the galaxy bias
on large scales. We also perform a weak lensing analysis (aperture statistics)
to extract the galaxy bias and the cross-correlation coefficient and compare to
the HOD prediction.
We apply this analysis on a data set composed of the photometry of the deep
co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg), of
Canda-France-Hawai Telescope/Stripe 82 deep \emph{i}-band weak lensing survey
and of the {\it Wide-Field Infrared Survey Explorer}infrared photometric band
W1.
The analysis on the SDSS-III/constant mass galaxies selection at is
in agreement with previous studies on the tracer, moreover we measure its
cross-correlation coefficient . For the higher redshift bins, we
confirm the trends that the brightest galaxy populations selected are strongly
biased (), but we are limited by current data sets depth to derive
precise values of the galaxy bias. A survey using such tracers of the mass
field will guarantee a high significance detection of the BAO.Comment: 17 pages, 15 figures, submitted to MNRA
Weak lensing in scalar-tensor theories of gravity
This article investigates the signatures of various models of dark energy on
weak gravitational lensing, including the complementarity of the linear and
non-linear regimes. It investigates quintessence models and their extension to
scalar-tensor gravity. The various effects induced by this simplest extension
of general relativity are discussed. It is shown that, given the constraints in
the Solar System, models such as a quadratic nonminimal coupling do not leave
any signatures that can be detected while other models, such as a runaway
dilaton, which include attraction toward general relativity can let an imprint
of about 10%.Comment: 25 pages, 29 figure
Constraining scalar-tensor quintessence by cosmic clocks
Scalar-tensor quintessence models can be constrained by identifying suitable
cosmic clocks which allow to select confidence regions for cosmological
parameters. In particular, we constrain the characterizing parameters of
non-minimally coupled scalar-tensor cosmological models which admit exact
solutions of the Einstein field equations. Lookback time to galaxy clusters at
low intermediate, and high redshifts is considered. The high redshift
time-scale problem is also discussed in order to select other cosmic clocks
such as quasars.Comment: 13 pages, 8 figures. to be published in Astron & Astrop
Examination of the astrophysical S-factors of the radiative proton capture on 2H, 6Li, 7Li, 12C and 13C
Astrophysical S-factors of radiative capture reactions on light nuclei have
been calculated in a two-cluster potential model, taking into account the
separation of orbital states by the use of Young schemes. The local two-body
potentials describing the interaction of the clusters were determined by
fitting scattering data and properties of bound states. The many-body character
of the problem is approximatively accounted for by Pauli forbidden states. An
important feature of the approach is the consideration of the dependence of the
interaction potential between the clusters on the orbital Young schemes, which
determine the permutation symmetry of the nucleon system. Proton capture on 2H,
6Li, 7Li, 12C, and 13C was analyzed in this approach. Experimental data at low
energies were described reasonably well when the phase shifts for
cluster-cluster scattering, extracted from precise data, were used. This shows
that decreasing the experimental error on differential elastic scattering cross
sections of light nuclei at astrophysical energies is very important also to
allow a more accurate phase shift analysis. A future increase in precision will
allow more definite conclusions regarding the reaction mechanisms and
astrophysical conditions of thermonuclear reactions.Comment: 40p., 9 fig., 83 ref. arXiv admin note: substantial text overlap with
arXiv:1005.1794, arXiv:1112.1760, arXiv:1005.198
Measuring the dark side (with weak lensing)
We introduce a convenient parametrization of dark energy models that is
general enough to include several modified gravity models and generalized forms
of dark energy. In particular we take into account the linear perturbation
growth factor, the anisotropic stress and the modified Poisson equation. We
discuss the sensitivity of large scale weak lensing surveys like the proposed
DUNE satellite to these parameters. We find that a large-scale weak-lensing
tomographic survey is able to easily distinguish the Dvali-Gabadadze-Porrati
model from LCDM and to determine the perturbation growth index to an absolute
error of 0.02-0.03.Comment: 19 pages, 11 figure
Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime
We present an exploration of weak lensing by large-scale structure in the
linear regime, using the third-year (T0003) CFHTLS Wide data release. Our
results place tight constraints on the scaling of the amplitude of the matter
power spectrum sigma_8 with the matter density Omega_m. Spanning 57 square
degrees to i'_AB = 24.5 over three independent fields, the unprecedented
contiguous area of this survey permits high signal-to-noise measurements of
two-point shear statistics from 1 arcmin to 4 degrees. Understanding systematic
errors in our analysis is vital in interpreting the results. We therefore
demonstrate the percent-level accuracy of our method using STEP simulations, an
E/B-mode decomposition of the data, and the star-galaxy cross correlation
function. We also present a thorough analysis of the galaxy redshift
distribution using redshift data from the CFHTLS T0003 Deep fields that probe
the same spatial regions as the Wide fields. We find sigma_8(Omega_m/0.25)^0.64
= 0.785+-0.043 using the aperture-mass statistic for the full range of angular
scales for an assumed flat cosmology, in excellent agreement with WMAP3
constraints. The largest physical scale probed by our analysis is 85 Mpc,
assuming a mean redshift of lenses of 0.5 and a LCDM cosmology. This allows for
the first time to constrain cosmology using only cosmic shear measurements in
the linear regime. Using only angular scales theta> 85 arcmin, we find
sigma_8(Omega_m/0.25)_lin^0.53 = 0.837+-0.084, which agree with the results
from our full analysis. Combining our results with data from WMAP3, we find
Omega_m=0.248+-0.019 and sigma_8 = 0.771+-0.029.Comment: 23 pages, 16 figures (A&A accepted
Cosmological models in scalar tensor theories of gravity and observations: a class of general solutions
We consider cosmological models in scalar tensor theories of gravity that
describe an accelerating universe, and we study a family of inverse power law
potentials, for which exact solutions of the Einstein equations are known. We
also compare theoretical predictions of our models with observations. For this
we use the following data: the publicly available catalogs of type Ia
supernovae and high redshift Gamma Ray Bursts, the parameters of large scale
structure determined by the 2-degree Field Galaxy Redshift Survey (2dFGRS), and
measurements of cosmological distances based on the Sunyaev-Zel'dovich effect,
among others.Comment: 26 pages,23 figures, accepted for publication in A&
DUNE: The Dark Universe Explorer
Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constraints on cosmological parameters, including the equation of state parameter of the dark energy and its evolution from redshift 0 to 1. DUNE is the subject of an ongoing study led by the French Space Agency (CNES), and is being proposed for ESA's Cosmic Vision programme
- …