1,442 research outputs found

    One, two, or three stars? An investigation of an unusual eclipsing binary candidate undergoing dramatic period changes

    Get PDF
    We report our investigation of 1SWASP J234401.81-212229.1, a variable with a 18 461.6 s period. After identification in a 2011 search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution's short-period limit of ~0.20 d, it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a single-star oblique rotator model in which variability results from stable cool spots on opposite magnetic poles; a two-star model in which the secondary is a brown dwarf; and a three-star model involving a low-mass eclipsing binary in a hierarchical triple system. We conclude that the latter is the most likely model

    Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b

    Full text link
    [Context] The first detection of an atmosphere around an extrasolar planet was presented by Charbonneau and collaborators in 2002. In the optical transmission spectrum of the transiting exoplanet HD209458b, an absorption signal from sodium was measured at a level of 0.023+-0.006%, using the STIS spectrograph on the Hubble Space Telescope. Despite several attempts, so far only upper limits to the Na D absorption have been obtained using telescopes from the ground, and the HST result has yet to be confirmed. [Aims] The aims of this paper are to re-analyse data taken with the High Dispersion Spectrograph on the Subaru telescope, to correct for systematic effects dominating the data quality, and to improve on previous results presented in the literature. [Methods] The data reduction process was altered in several places, most importantly allowing for small shifts in the wavelength solution. The relative depth of all lines in the spectra, including the two sodium D lines, are found to correlate strongly with the continuum count level in the spectra. These variations are attributed to non-linearity effects in the CCDs. After removal of this empirical relation the uncertainties in the line depths are only a fraction above that expected from photon statistics. [Results] The sodium absorption due to the planet's atmosphere is detected at >5 sigma, at a level of 0.056+-0.007% (2x3.0 Ang band), 0.070+-0.011% (2x1.5 Ang band), and 0.135+-0.017% (2x0.75 Ang band). There is no evidence that the planetary absorption signal is shifted with respect to the stellar absorption, as recently claimed for HD189733b. The measurements in the two most narrow bands indicate that some signal is being resolved.[abridged]Comment: Latex, 7 pages: accepted for publication in Astronomy & Astrophysic

    Soft Robotics: Cerebellar Inspired Control of Artificial Muscles

    Get PDF
    Soft robots have the potential to greatly improve human-robot interaction via intrinsically safe, compliant designs. However, new compliant materials used in soft robotics – artificial muscles – are fabricated with poor tolerances and have time-varying dynamics. Therefore, a key technical challenge is to develop adaptive control algorithms for these materials. Here, we take a novel bio-inspired approach to artificial muscle control using the adaptive filter model of the cerebellum. The cerebellum is a brain structure essential for fine-tuning human performance in a diverse range of sensory and motor tasks. Its ability to automatically calibrate and adapt to changes in a wide variety of systems using a homogenous, repeating structure suggests that cerebellar-inspired models are highly suited to controlling artificial muscles in a range of tasks. We investigate the performance of the cerebellar adaptive filter algorithm in the displacement control of a soft actuator. Experimental results demonstrate that the cerebellar algorithm is successful and learns to accurately control the time-varying dynamics of the soft actuator in real-time

    Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex

    Get PDF
    Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these changes, we must first understand how changes in beta activity are caused in healthy subjects. We therefore adapted a canonical (repeatable) microcircuit model used in dynamic causal modelling (DCM) previously used to model induced responses in visual cortex. We adapted this model to accommodate cytoarchitectural differences between visual and motor cortex. Using biologically plausible connections, we used Bayesian model selection to identify the best model of measured MEG data from 11 young healthy participants, performing a simple handgrip task. We found that the canonical M1 model had substantially more model evidence than the generic canonical microcircuit model when explaining measured MEG data. The canonical M1 model reproduced measured dynamics in humans at rest, in a manner consistent with equivalent studies performed in mice. Furthermore, the changes in excitability (self-inhibition) necessary to explain beta suppression during handgrip were consistent with the attenuation of sensory precision implied by predictive coding. These results establish the face validity of a model that can be used to explore the laminar interactions that underlie beta-oscillatory dynamics in humans in vivo. Our canonical M1 model may be useful for characterising the synaptic mechanisms that mediate pathophysiological beta dynamics associated with movement disorders, such as stroke or Parkinson's disease

    Cortical beta oscillations are associated with motor performance following visuomotor learning

    Get PDF
    © 2019 The Authors People vary in their capacity to learn and retain new motor skills. Although the relationship between neuronal oscillations in the beta frequency range (15–30 Hz) and motor behaviour is well established, the electrophysiological mechanisms underlying individual differences in motor learning are incompletely understood. Here, we investigated the degree to which measures of resting and movement-related beta power from sensorimotor cortex account for inter-individual differences in motor learning behaviour in the young and elderly. Twenty young (18–30 years) and twenty elderly (62–77 years) healthy adults were trained on a novel wrist flexion/extension tracking task and subsequently retested at two different time points (45–60 min and 24 h after initial training). Scalp EEG was recorded during a separate simple motor task before each training and retest session. Although short-term motor learning was comparable between young and elderly individuals, there was considerable variability within groups with subsequent analysis aiming to find the predictors of this variability. As expected, performance during the training phase was the best predictor of performance at later time points. However, regression analysis revealed that movement-related beta activity significantly explained additional variance in individual performance levels 45–60 min, but not 24 h after initial training. In the context of disease, these findings suggest that measurements of beta-band activity may offer novel targets for therapeutic interventions designed to promote rehabilitative outcomes

    Misaligned spin and orbital axes cause the anomalous precession of DI Herculis

    Full text link
    The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. One system, however -- DI Herculis -- has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. Here we report that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.Comment: Nature, in press [11 pg

    Creating the first national linked dataset on perinatal and maternal outcomes in Australia: Methods and challenges

    Get PDF
    © 2019 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (March 2019) in accordance with the publisher’s archiving policyBackground Data linkage offers a powerful mechanism for examining healthcare outcomes across populations and can generate substantial robust datasets using routinely collected electronic data. However, it presents methodological challenges, especially in Australia where eight separate states and territories maintain health datasets. This study used linked data to investigate perinatal and maternal outcomes in relation to place of birth. It examined data from all eight jurisdictions regarding births planned in hospitals, birth centres and at home. Data linkage enabled the first Australia-wide dataset on birth outcomes. However, jurisdictional differences in data collection created challenges in obtaining comparable cohorts of women with similar low-risk pregnancies in all birth settings. The objective of this paper is to describe the techniques for managing previously linked data, and specifically for ensuring the resulting dataset contained only low-risk pregnancies. Methods This paper indicates the procedures for preparing and merging linked perinatal, inpatient and mortality data from different sources, providing technical guidance to address challenges arising in linked data study designs. Results We combined data from eight jurisdictions linking four collections of administrative healthcare and civil registration data. The merging process ensured that variables were consistent, compatible and relevant to study aims. To generate comparable cohorts for all three birth settings, we developed increasingly complex strategies to ensure that the dataset eliminated women with pregnancies at risk of complications during labour and birth. It was then possible to compare birth outcomes for comparable samples, enabling specific examination of the impact of birth setting on maternal and infant safety across Australia. Conclusions Data linkage is a valuable resource to enhance knowledge about birth outcomes from different settings, notwithstanding methodological challenges. Researchers can develop and share practical techniques to address these challenges. Study findings suggest that jurisdictions develop more consistent data collections to facilitate future data linkage

    The spin-orbit alignment of the transiting exoplanet WASP-3b from Rossiter-McLaughlin observations

    Get PDF
    We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (lambda) is small and consistent with zero within 2 sigma; lambda = 15 +10/-9 deg. WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically-gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6 +2.2/-2.1 km/s) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5 km/s). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. (2009) designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7 +1.4/-1.3 km/s).Comment: 7 pages, 3 figures, published in MNRAS 405 (2010) 1867-1872. Update includes discussion on differential rotaation and correction of typo
    corecore