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This paper is concerned with computational modelling of fluid mixing by arrays of villi-like actuators. There are numerous
applications of such actuators motivated by the motility and mixing induced by natural villi in the small intestine, such
as microbial fuel cells and swimming robots - understanding how mixing occurs as from viscous-dominated to inertia
dominated flows is paramount. Here, we analyse mixing in two-dimensional arrays of actuators, where neighbouring
actuators perform in-phase or anti-phase oscillations. We show that in both these cases, the temporal behaviour becomes
progressively more complex as inertia, or the Reynolds number, is increased. This behaviour is classified into three
regimes or stages with distinct behaviours and flow structures. We show that mixing can be substantially enhanced in the
direction parallel to the wall the actuators are mounted on. We show this mixing is effectively constrained to a peripheral
region or layer above the actuator tips. This layer is thicker in the anti-phase case than the in-phase case; however in
both cases this layer thickness saturates at high Reynolds number. Particle tracking results are used to define a mixing
number, which shows the anti-phase pattern to be the most effective at mixing both along and across this peripheral layer,
and this is linked to the flow structures generated in each stage. Our results provide a mapping for a range of behaviours
that can be achieved through coordinated active motions of villi-like structures, that we hope will be useful for the design
of future robotics and fluidic-control systems.

I. INTRODUCTION

Motile villi — small finger-like projections in mammalian
small intestines, as shown in fig. 1 — are known to exhibit a
variety of contractile movements driven by smooth muscle fi-
bres originating from the mucosa under neural-enteric control1,
coordinated to enhance digestion through active motions. De-
signs which can replicate the essential flow features generated
by villi have the potential to support the design of a range of
bioinspired mixers and sensors, in a similar manner to arrays
of artificial cilia2–4 but with a relatively simpler actuator to
design and control.

For example, microbial fuel cells (MFCs), a type of bio-
electro-chemical reactor5,6, generate electrical energy from
organic material within electrode-containing chambers. Al-
though MFCs are a promising technology for clean waste
management and energy production, the issue of sedimentation
of particulates prevents continuous operation from being re-
alised7,8. To alleviate these issues, artificial villi, or simplified
actuators could be embedded onto the surface of MFCs anodes
for particulate sensing, dispersion and increased power output
gains via an increased surface area.

As a second example, artificial villi could also be used for
propulsion in the design of novel bioinspired swimmers, by
mounting arrays of motile villus-shaped protrusions onto a
robot. Since artificial applications have flexibility of choice of
inertial scaling through choice of forcing, knowledge of effec-
tive control strategies provides design cues for the development
of bioinspired artificial prototypes at a range of length scales in
a wide variety of environments. Often, the use of villi-like pro-
trusions or cilia are associated with micro-swimmers due to the
length scales of most biological cilia9. Due to this fact, many
studies modelling cilia10–12, both experimentally and numeri-
cally, are in the viscous regime, where Re→ 0. However, natu-
ral systems (such as the propulsion of ctenophores) can employ

cilia with lengths of the order of millimeters, with Reynolds
numbers approaching 103 (see, e.g.,13,14) which require mod-
elling that incorporates inertial effects in the flow15,16. At even
higher Reynolds numbers where inertial scales and associated
momentum advection become dominant (between Re=O(103)
and Re = O(105)), two-dimensional17,18 and experimental19

studies have shown that schools of fish that symmetrically beat
tails in anti-phase gain significant energy savings compared
to in-phase. Considering these results together, there is an
implication that the benefits of phased oscillating motions ap-
ply to flows over a wide range of length scales and therefore
across both viscous- and inertia-dominated situations. The
behaviour of these flows can be demonstrated in simplified
two-dimensional computational models.

Artificial villi also have the potential to improve the per-
formance of chemical sensors through controlled circulation.
This is because chemical sensors often rely on close proximity
of the target analyte in order to detect a measurable physical
change (e.g. conductivity)20. By embedding chemical sensors
on the tip of artificial villi and varying the manner in which
fluid is circulated, there is the possibility to control and en-
large both the sensitivity and measurement domain. Further,
by embedding multiple sensors along the villus shaft, it would
be possible to use differential sensing to map environmental
conditions in greater detail

While the topology of static obstructions on the walls of
fluidic environments has been shown to affect the resulting
flow and transport properties21, knowledge of how coordi-
nated movements affect fluidic conditions is required to de-
velop bioinspired artificial applications effectively. Recent
in-silico22, and ex-vivo23, studies have investigated the hy-
drodynamic response of groups of villi. For example, in24,25,
groups of oscillating villi coupled to lid-driven cavity flow are
investigated using a multi-scale Lattice-Boltzmann model in
two and three dimensions. Although there is no specific bio-
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logical justification for the groupings, the work illustrates how
villus motility may influence transport at length scales as long
as the scale of the gut. In a separate simulation study26, it has
been shown that large-scale gut wall contractions lead to ‘mi-
crofolds’ that actively oscillate the intervillus spacing, leading
to the formation of vortices. Although these studies propose
different muscle groups for the control of peripheral mixing,
both show that coordinated changes in intervillus volume can
significantly augment flow conditions. Thus, strategic control
of motile villus-shaped protrusions can lead to the formation
of effective peripheral mixing layers.

Significant mixing and energy-saving benefits can also be as-
sociated with phased oscillating motions across hydrodynamics
scales. In the non-inertial regime (Re = O(10−3)), numerous
authors have investigated mixing by beating ciliated structures
across a surface in two27,28 and three dimensions29–32. These
studies show that asymmetrical beating patterns are required
to induce chaotic mixing and out-of-phase oscillations signifi-
cantly shorten mixing timescales.

To extend more generally to artificial applications, we
seek to characterise the hydrodynamics of villi-like structures
throughout a range of flow regimes and provide a mapping for
behaviours to be expected near a small intestine-like wall. At
low inertial scales (i.e. ignoring gut-wall contractions), domi-
nating viscous effects require symmetry-breaking motions33

to induce mixing on any reasonable timescale. Conversely,
although high inertial scales lead to turbulent effects which
necessarily induce mixing34, flows in which inertial effects
are significant but not so high that hydrodynamic turbulence
is present might be sensitive to the specific motility patterns
employed.

In this paper, we perform a computational fluid dynamics
numerical simulation of the two-dimensional hydrodynamic
response to the motion of linear arrays of villi-like structures.
We use a Reynolds number range that starts at values that are
finite but achievable in some biological systems13,14 (Re = 10),
and ends at values that are far beyond those that are feasible
biologically, but that can be achieved with artificial actuators
(Re = 6000). We explore how coordinated in-phase and anti-
phase motions affect mixing within a peripheral region near
the villi, across this large range of Re. We restrict the phase
between the motions of neighbouring villi to the purely in-
phase and anti-phase cases for two reasons: first, these are
the two limiting cases of minimum and maximim change in
intervillus volume over the an oscillation cycle; second, both of
these cases are spatio-temporally symmetric with a zero mean,
and so neither induces any first-order transport, i.e., the motion
of fluid over a time longer than the oscillation period is due to
nonlinear effects induced by inertia. These two facts allow us
to quantify the transport and mixing induced by second-order
effects.

Our results indicate that larger changes in intervillus volume
greatly enhance the underlying mixing mechanics generating
the peripheral mixing layer. We believe our work supports
the development of artificial mixers and sensors inspired by
active villi. The restriction of our simulations to two dimen-
sions means that some three-dimensional effects that may sig-
nificantly impact transport — such as streamwise tip vortex

production from pillar-like protrusions — are not captured.
The results presented here may not be directly relevant in a
flow where there is large variation in the third or spanwise
dimension (either geometrically via the shape of the villi, or
kinematically via the relative motion of the villi). However,
the framework presented here, where mixing is enhanced by
increasing the intervillus volume change, may be a useful one
to explore in a three-dimensional scenario. Further, the results
may be directly applicable to flows with more paddle-like actu-
ators, or where sheets of pillar-like villi have motions that are
synchronised in the spanwise direction.

This paper is organised as follows. We begin, in section II,
with a summary of the mathematical model, a description of
the numerical method, and a review of relevant supporting anal-
ysis concepts; in particular, the mixing mechanisms typically
observed in transitional flows. We then present the results in
section III, beginning in section III A by exploring the effects
of active intervillus volume change, via simulations of a single
pair of villi oscillating both in-phase and anti-phase. Following
that, in section III B, we scale the problem to arrays of 15 villi
revealing new coupling effects that enhance mixing. Note that
our aim is not to optimise outputs as array size varies, but rather
to identify the qualitative flow structures that are (or are not)
common to the two different scenarios. We discuss the results
in section IV, and end with concluding remarks in section V.
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(a)

(b)

FIG. 1: (a) Small intestine of the bushtail possum, reprinted
with permission from Lentle, R.G., Janssen, P.W.M., De-
loubens, C., Lim, Y.F., Julls, C., Chambers, P., Mucosal mi-
crofolds augment mixing at the wall of the distal ilieum of the
brushtail possum, Neurogastroenterology and motility, 25, 881-
e700. Copyright 2013 John Wiley & Sons Inc. The marked
length scale gives some indication of the approximate length
(1mm) and spacing (0.25mm) of the villi (b) Anatomical view
of a villus, reproduced from Food and chemical toxicology,
39(3), DeSesso, J., Jacobson, C. Anatomical and phsiological
parameters affecting gastrointestinal absorption in humans and
rats, 209-228, Copyright (2002) with permission from Elsevier.

II. METHODS

In this section, we describe the mathematical model used to
simulate fluid flow consisting of a linear array of oscillating
villi-like actuators in a two-dimensional viscous fluid. To aid
discussion in the following sections, we follow with a summary
of the basic flow structures and distinct flow regimes that enable
mixing and transport, which are observed in our results.

A. Numerical Method

Two-dimensional simulations of the fluid flow generated by
villi-like structures, rotating about a point near their base in
an oscillatory manner, were conducted using a sharp-interface
immersed boundary method. A detailed description of the code,
and its validation for use in coupled fluid-structure interaction
problems such as that studied here, is provided by35. The
pertinent details are recalled here.

The code solves the incompressible Navier–Stokes equations

∂u

∂ t
=−(u ·∇)u− 1

ρ
∇p+ν∇

2u+Ab,

∇ ·u= 0,
(1)

where u is the velocity field, t is time, ρ is the fluid density,
p is the pressure field, ν is the fluid kinematic viscosity, and
Ab models the presence of the immersed boundaries, essen-
tially coupling the the fluid and solid phases and enforcing
the boundary conditions for the fluid at the villi-like structure
surface.

1. Spatial discretization

The equations are spatially discretized on a simple Cartesian
mesh using a second-order central-difference scheme. The use
of a Cartesian, non-body-conforming mesh simplifies the mesh
construction and also allows for simple domain decomposition
for distributed-memory parallel computation.

The velocity and pressure field values are solved for at the
nodes this co-located mesh. Note that the “face” values of the
velocity field (the values at the mid-point between the nodes)
was also calculated and used to form the right-hand side of the
Poisson equation for the pressure (described below in section
section II A 2) to avoid odd-even decoupling or “checkerboard-
ing” of the pressure.

2. Temporal discretization and immersed boundary treatment

Temporal integration of the resulting difference equations is
performed using a two-way time-splitting scheme. This splits
the time integration into two sub-equations, the first integrating
the velocity at the beginning of the timestep to an intermediate
time by only considering the advection and diffusion terms (the
first and third terms on the right-hand side of the first equation
in equation (eq. (1))). The time-splitting scheme follows the
process outlined in36.

This intermediate velocity field is then updated by imposing
the motion of the villi-like structures (the immersed bound-
aries) over the timestep (the last term on the right-hand side of
the first equation of equation (eq. (1))). This requires a process
of updating values that cross the immersed boundary - those
going from the fluid into the solid (termed “ghost” points),
and vice versa (termed “fresh” points). Ghost and fresh points
are assigned a velocity value via interpolation using a stencil
that incorporated the immediately-neighbouring points and the
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value of the boundary condition at the closest surface point,
a process that needs to be solved iteratively as many of the
fresh and ghost points neighbour each other and their values
are therefore coupled. The immersed boundary is represented
by linear finite elements that maintain a second-order accuracy.
A detailed description of this identification and interpolation
process is provided in35.

We note here that this direct use of the value of the boundary
condition in the interpolation for ghost and fresh point values
results in a sharp representation of the boundary. Forces are
not distributed over neighbouring points to weakly enforce
the boundary conditions - the boundary condition is imposed
exactly up to the order of the discretization (which here is
second order). A sharp-interface representation is important
in flows such as those studied here where the production of
vorticity and the roll-up of the boundary layer into vortices
dictates the dynamics.

A second sub-step equation is then formed to integrate the
velocity field from this intermediate time to the end of the
timestep, by integrating the pressure term. First, the divergence
of this equation is taken, and the divergence-free condition
from continuity (the second equation in equation eq. (1)) is
imposed at the end of the step, resulting in a Poisson equation
for the pressure correction (the change in pressure over the
timestep) with a right-hand side in terms of the intermediate
velocity field. This right-hand side is formed using the face
values of this field (the values interpolated from the nodes to
the mid-points between nodes) to ensure odd and even points
are coupled.

A further correction to the right-hand side is imposed to
improve the mass conservation. Those cells of the underlying
mesh that are “cut” by the boundary are identified, and clas-
sified as small (where less than half the cell volume remains
in the fluid) and large (where half or more of the cell volume
remains in the fluid). For large cells, there is no treatment.
However, for small cells, their right-hand side contribution is
distributed to surrounding cells in the domain. This ensures
that discrete volume is not lost as cells cross from the fluid into
the solid, and significantly improves mass conservation. The
scheme, referred to as a “cut-cell” technique, has previously
been described, tested and validated37. The resulting Poisson
equation is then solved for the pressure correction using a ge-
ometric multigrid method, typically to a tolerance such that
residuals are < 10−6 of the maximum pressure in the domain.

Finally, this pressure correction is added to the pressure, and
the velocity field is integrated from the intermediate time to
the end of the timestep.

The code has previously being employed for rotating38 and
multiple-body fluid-structure interaction problems39,40, and
stability and structural sensitivity studies41.

3. Boundary conditions

At the structure surface, a Dirichlet condition is imposed
for the velocity from the prescribed motion of the structure.
For the pressure, a zero-normal-gradient condition is imposed.
More complex conditions for the pressure gradient that are

derived from the Navier-Stokes equations42 have been tested
but provide effectively no change to the flow, and the current
condition has been validated previously against other codes
in similar fluid-structure flows35. These boundary conditions
are incorporated into the immersed boundary interpolation
described above in section section II A 2.

At the domain boundaries, a zero-normal-gradient condi-
tion is imposed for the velocity component tangential to the
boundary, while the normal component is set to zero (i.e., a
zero-penetration condition). This zero-stress, or Robin, bound-
ary condition is also applied under the villi-like structures,
effectively removing the boundary layer by mimicking a free
surface. The domain boundary conditions are imposed at face
locations, in between two mesh nodes. This leaves a layer
of ghost nodes that are outside the domain. Boundary con-
ditions are imposed by extrapolation (of the same order as
the underlying scheme) for values on the ghost nodes from
the neighbouring points in the fluid domain and the boundary
condition.

B. Problem set-up

For the simulations of this study, a rectangular fluid domain
of length 30L and height 10L — where L is the length of the
villi; see below — was discretized using a 2048×1024 grid,
with variable mesh spacing used to concentrate points in the
vicinity of the villi where high flow gradients are expected,
as shown in fig. 2. No background flow was imposed, with
the flow being quiescent other than the motion induced by
the motion of the villi. We reiterate that the motion of the
villi is prescribed and is not a function of the fluid motion
- loosely mimicking biological villi whose motion may be
controlled by muscular actuation. Villi were represented as
rigid rectangles of length L and width 0.25L, with semi-circular
end caps, which then rotated about the centre of curvature of
the bottom cap. Villi were placed such that a gap of 0.1L was
maintained between the villi and the bottom boundary of the
flow domain. While this allowed a small amount of fluid to pass
between the villi and bottom boundary, it avoided a mismatch
of boundary conditions and it was observed that very little flow
was induced in this region. In multiple-villi simulations, the
spacing between the villi was maintained at 0.675L. The arc
length of travel of the tip of each villus was kept constant at
W = Lπ/12. The geometry is shown schematically in fig. 3.

On the fluid domain, zero-stress boundary conditions were
imposed for the velocity and a zero-normal-gradient condition
was imposed for the pressure on all the boundaries. On the
villi, a no-slip condition was imposed for the velocity, and a
zero-normal-gradient condition was imposed for the pressure.
Note that this choice of boundary conditions, along with the
interpolation scheme used to impose the immersed boundaries,
has been shown to maintain the second-order accuracy of the
finite-difference scheme36.

Although several possible length scales and thus non-
dimensionalisations for the Reynolds number exist, we use
the definition below to capture effects of regular oscillations
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and villus width,

Re =
ψLW

ν
, (2)

where ψ is the villus oscillation angular frequency and ν is
kinematic viscosity. Note that while the geometry (the shape
and spacing of the villi) is not varied, and the oscillation of
the villi is sinusoidal, the problem is fully parameterized using
Re, the phase angle φ , and an oscillatory Reynolds number, or
the square of the Womersley number Reosc = ψL2/ν . These
parameters arise using L to nondimensionalize lengths, and ψ

to nondimensionalize time. We have varied Re by varying the
viscosity (equivalent to varying the inverse of the frequency)
and as such, both Re and Reosc vary proportionally. We high-
light that by presenting our results only in terms of Re, we
are not implying that our results are independent of the value
of Reosc. However, nondimensionalizing in the way chosen
and presenting in terms of Re is practical or “natural” from
the perspective of applications — the normalized data show
the trends that would occur if a given system (biological or
synthetic) with fixed geometry was explored as a function of
frequency.

In the simulations below, the Reynolds number was varied
between Re = 10 to Re = 6000 with the following values; 10,
100, 1000, 2000, 4000, 6000. This was achieved by fixing
ψ = 1rad.s−1, and varying the value of ν (given in units of
L2s−1).

C. Flow Regimes

Three distinct flow regimes were consistently observed un-
der the parameters studied43:

Stage 1: Isolated tip vortex enclosing the oscillating villi tip.

Stage 2: Localised stably oscillating vortex dipole at the same
frequency as the villus.

Stage 3: Vortex shedding and the development of spatio-
temporal complexity.

We note that the range of Re of each stage, and the value
of Re of the transitions between these stages, have not been
determined exactly, however the values we report are indicative,
and clearly show the existence of these three distinct stages.
To gain a sense of how the different stages affect flow structure,
the generic flow features typical to each stage are shown in
fig. 4; while these results are generated by a single villus, the
same structures are observed in multi-villi flow, as is shown in
section III.

In Stage 1, despite the presence of an isolated tip vortex,
mixing via symmetric oscillations is limited due to dominating
viscous effects that cause the flow to be nearly reversible. In
this stage, the flow is quasi-steady; the flow is overwhelmingly
defined by the position of the villus, with insignificant effect
of the history of the motion, and there is little opportunity for
mixing. As inertia increases in Stage 2, fig. 4b, a portion of
angular momentum is preserved from each half-oscillation,

resulting in the formation of a pair of counter-rotating vortices,
but this dipole remains attached to the tip of the oscillating
villus. Further increases in inertia in Stage 3, fig. 4c, induce
vortex shedding away from the tip, resulting in complex non-
linear interactions indicative of mixing.

D. Vortex Pairs

Since vortex formation is the basic feature of transitional
and turbulent flows, knowledge of the common interactions of
vortices forms a pathway for understanding the transport and
mixing mechanics in flows generated by villus-like structures.
Our simulations, described in detail in the following section,
show that as inertia increases, oscillatory motions generate
sets of vortices that interact in increasingly complex ways.
Formation of counter-rotating vortex pairs leads to transport
dipoles which transport fluid over potentially large distances,
whereas co-rotating vortices enhance stirring locally through
merging. To aid understanding of these behaviours, we give
a brief summary of common vortex interactions below; for
further details see, e.g.,44.

By applying conservation of angular momentum, it can be
shown44 that a pair of inviscid point vortices (dipole), with
vorticities Γ1,2, located at xc

1,2, , rotate about a fixed point

Xc =
Γ1x

c
1 +Γ2x

c
2

Γ1 +Γ2
, (3)

with constant angular velocity

Ω =
Γ1 +Γ2

2πb2 . (4)

where b is their constant separation. An equal strength co-
rotating vortex pair, Γ1 = Γ2 = Γ, rotates about Xc with an-
gular velocity Ω = 1/(πb2). In contrast, an equal strength
counter-rotating pair, Γ1 =−Γ2 = Γ, advects along a straight
path with speed U = Γ/(2πb). Considering these two cases
together, counter-rotating pairs of dissimilar strength orbit
along circular paths with large radii and small angular velocity,
whereas dissimilar strength co-rotating pairs orbit with large
angular velocity and a small mean radius. In all cases, the pair
maintain their initial separation distance b from each other.

Since both counter and co-rotating point vortices generate
closed streamlines, a vortex pair acts (over short timescales) as
a transport mechanism that translates a coherent set of particles.
The effects of viscosity ultimately cause co-rotating vortices
to undergo an instability called merging that causes the pair to
join into a single vortex of larger strength45. This develops via
the influence of outer ghost-vortices, which draw in diffused
vorticity when the pair are sufficiently close. Although the
time-scale of merging is dependent on the relative strength and
distance of the pair46, the merged vortex stirs fluid in a spiral-
like pattern, resulting in mixing47. In contrast, counter-rotating
dipoles tend to be more stable thanks to their relatively smaller
net angular momentum44, facilitating their transport over large
distances.

The flow structures and effects described above were found
to be present throughout our simulations, and to interact in
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FIG. 2: Schematic illustration of the mesh set-up for numerical simulations. (a) The full solution domain, showing the villi in
their neutral position. Red lines show the Cartesian mesh, concentrated near the villi in the centre and towards the bottom of the
domain. Only 1/20 of the grid lines are shown, for clarity. (b) A close-up of the mesh near a single villus tip in the centre of the

domain. Red lines show the Cartesian mesh, with all grid lines shown.

0.1L

L

0.675L W=Lπ/12

0.25L

FIG. 3: Schematic illustration of the villus geometry. Each
Villus has length L and width 0.25L. Villus-to-villus spacing
was set at 0.675L for both the the two-villi and fifteen-villi

cases. Villi-to-wall spacing was fixed at 0.1L in all cases. The
amplitude (arc length of travel) of the villi was fixed at

W = Lπ/12. White crosses mark the point of rotation, which
coincides with the center of curvature of each villus base.

a variety of complex ways, as we describe in the following
section.

III. RESULTS

A. Two Villi

We begin by introducing the effects of transport and mixing
generated by the oscillation of a pair of villi-like structures. To

explore the effects of interaction between the flows generated
by the two villi, we analyse two simple patterns:

1. in-phase motion,

2. anti-phase motion.

These patterns are good test cases for investigating the effects
of variable phase because they vary drastically in the way
they affect the geometry of the intervillus region, as shown
in fig. 5. Compared to the in-phase pattern, the anti-phase
pattern oscillates approximately ten times more fluid from the
intervillus region, indicating an increase in inertia from within
the intervillus region. This leads to an order more maximum
instantaneous mass flux for the anti-phase case, increasing
mass flux along the tip line. Therefore, the in-phase and anti-
phase patterns serve as useful extreme examples to explore and
explain how the dynamic coupling of villi varies with phase
difference.

1. Development of Complex Behaviour and Mixing

Figures 6 and 7 show snapshots of the vorticity field gen-
erated by two oscillating villi as time increases, for a range
of different values of Re between Re = 10 and Re = 6000, for
in-phase and anti-phase motions respectively. Both in- and anti-
phase motions exhibit the three transitional regimes described
above.

At low inertial scaling, Re = 10, the flow exhibits Stage 1
behaviour and small vortices appear that remain attached to
each tip, increasing in intensity and flattening as Re increases.

As the flow transitions to Stage 2, by Re = 1000, an oscillat-
ing dipole appears above each villus, see e.g. the two sample
images which are approximately 1 period apart at t = 2.25 and
t = 7.25 in fig. 6 or fig. 7. Since the sign of the circulation of
each vortex is determined by the phase of the villus generating
them, the pair of dipoles have the same sign of vorticity for
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(a) Stage 1 (Re ≈ 100)

(b) Stage 2 (Re ≈ 1000)

(c) Stage 3 (Re ≈ 4000)

FIG. 4: The three stages of flow behaviour for a single
oscillating villus after 10 oscillations, with oscillation

amplitude 15°, and Re as indicated. (a) An example of stage 1,
Re = 100. (b) An example of stage 2, Re = 1000. (c) An

example of stage 3, Re = 4000. Images are taken at an instant
where the villus is vertical, moving right to left.

the in-phase pattern and opposite sign for anti-phase pattern.
Dipoles are separated by a gap of low vorticity for the in-phase
pattern and do not interact. However, the large variation in tip
separation of the anti-phase pattern forces the dipole pair to be
brought close together, resulting in flattening along the central
intervillus axis. Despite this, the vortex dipoles remain fixed to
the tip and the vorticity field is mirrored along the intervillus
axis throughout the flow in stage 2.

During Stage 3 (typified here by the flows at Re = 4000 and
Re = 6000) of anti-phase forcing, anti-phase dipole flattening
results in the collision of detached oppositely signed dipoles.
As a result, the vortices lose their partner in favour of the
neighbouring vortex. This results in two new counter-rotating
dipoles of similar strength that have advective components
in the vertical direction, as shown in fig. 8c. The lower and
upper dipoles have downward and upward advective compo-

(a)

(b)

(c)

(d)

FIG. 5: Differences in geometric properties over a period of
oscillation, indicating varying flow behaviours between

in-phase and anti-phase oscillations. (a) a schematic
illustration of the measured quantities. (b) Variation of

tip-to-tip distance between two adjacent villi over a cycle of
oscillation. (c) Variation of the volume between two adjacent
villi over a cycle of oscillation. (d) Instantaneous mass flux

crossing the line connecting the villi tips of two adjacent villi
over a cycle of oscillation. Since the anti-phase oscillation has
a greater change in both tip-to-tip length, l, and volume, V (c),

the maximum instantaneous flux across the space between
adjoining villus tips, Φ, is also substantially increased,

indicating dynamics that have the potential to influence a
larger region of space.
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Stage 1 Stage 2 Stage 3

FIG. 6: Development of vorticity magnitude field as time increases, for two villi oscillating in-phase, for values of Re as indicated.
Red boxes delineate stages 1-3 (left to right). During stage 1, a single vortex remains attached to the tip of each villus,

approximately resulting in a simple oscillatory flow. In stage 2, a pair of vortices form a dipole but remain attached to the tip.
Vortices shed after each oscillation during stage 3, resulting in increasingly complex behaviour as Re and time increases.

nents respectively. However, this formation occurs while the
intervillus volume is increasing, reducing the net velocity of
the upper vortex. The flow grows more complex as it develops
in time: counter-rotating dipoles of similar strength continue
to form and undergo further interactions, leading to transport
away from the villi in a variety of directions, as shown in
fig. 8d. Therefore, the anti-phase pattern displays behaviours
that indicate both mixing and transport.

In contrast, in stage 3 with in-phase patterns, vortex shedding
begins with the creation of two well-separated dipoles of equal
orientation and sign, as shown in fig. 9a. The dipole center
rotates with high curvature, which causes one of the dipoles to
advect towards the outer base while the other rotates into the
intervillus region. Since the timescale of advection is similar
to the oscillation period, the intervillus dipole interacts with a
new dipole being formed by the opposing villus to which it was
created. Increasing inertia, or equivalently increasing Re, leads
to intensified intervillus-villus dipole interactions that result in

the formation of additional counter-rotating dipoles that advect
slowly and dissipate quickly. As a consequence, equal strength
counter-rotating dipoles are infrequent and rarely advect away
from the boundary. Thus, the in-phase pattern displays reduced
transport characteristics compared to the anti-phase case.

2. Transport

To compare how the various vortex shedding modes affect
transport, we measure the lengths of the particle paths: the
total displacement d(x) of a fluid particle (following the flow),
over the duration t = [0,T ] of the numerical experiment, that
started at position x= x(0) at time t = 0,

d(x) =
∫ T

0
u(x(t), t) dt, (5)
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Stage 1 Stage 2 Stage 3

FIG. 7: Development of vorticity magnitude field as time increases, for two villi oscillating anti-phase, for values of Re as
indicated. Red boxes delineate stages 1-3 (left to right). During each oscillation, converging tips cause counter-rotating vortices to
be brought close together. Although these vortices remain attached to the tip during stages 1 and 2, an increase in inertia causes
the opposing vortices to flatten against one another. During stage 3, this interaction results in the formation of pairs of transport
dipoles that advect into the intervillus space and away from the periphery, resulting in complex behaviour that develops in time.

referred to as a displacement field in what follows. Particles
that intersected a villus boundary were removed and had their
final position estimated by averaging neighbouring particles.

The displacement fields after 10 villus oscillations for in-
phase and anti-phase patterns are shown in figs. 10 and 11
respectively. During Stage 1, both patterns display jet-like
behaviour along the central intervillus axis that is fed by two
entrainment vortices above the tips. Since the anti-phase pat-
tern produces a larger mass flux, increased magnitudes of
kinetic energy result in intensified displacements compared to
the in-phase case. Since the displacement field is composed
of a single jet rather than two, the tip vortices couple to affect
displacement over a long timescale.

In stage 2, development of the oscillating vortex pair sig-
nificantly augments the displacement field for both in- and
anti-phase patterns, as shown at Re = 1000 in fig. 10c and
fig. 11c. Instead of an upward jet of fluid, a small mixing

region is identified in the form of a complex displacement field
near the tip and shaft regions. Since displacement magnitudes
are similar for the anti-phase and in-phase cases, there is an
indication of a lack of cross-flow between the villi. Neverthe-
less, vortex merging causes fluid to mix within the intervillus
region, penetrating deeper for the anti-phase case.

In stage 3, the mixing region increases above the tips of the
villi, resulting in a mushroom cloud shape, shown in fig. 10e
and fig. 11e. Further increases in Re extend the mixing region
in space, both horizontally and vertically, see fig. 10f and
fig. 11f.

Throughout this process, the anti-phase case has consistently
larger displacement magnitudes and mixing regions. This
supports our proposition that the anti-phase pattern enhances
mixing and transport via the collision of opposing dipoles.
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(a)

(b)

(c)

(d)
t = 8, Re = 6000

t = 8, Re = 6000

t = 1.25, Re = 2000

t = 0.75, Re = 1000

FIG. 8: Main features of two villi anti-phase flow. Converging
villi tips during stage 2 causes opposing dipoles to flatten
against one another (a). As inertia increases, the dipole

collision results in the formation of a pair of transport dipoles
that advect vertically away from the villi and into the

intervillus region (b). In stage 3, as the flow develops at later
times, a complex interaction of transport dipoles near to the

villi results in mixing and transport (c). Outside of this
complex region, isolated transport dipoles advect over large

distances (d).

(a)

(b)

(c)

(d)
t = 1, Re = 2000

t = 1.35, Re = 2000

t = 1.75, Re = 2000

t = 10, Re = 6000

FIG. 9: Main features of two villi in-phase flow. In stage 3,
rotating dipoles are formed at the villi tips, and spill to one

side (a). Although frequent vortex merging events were
observed even in stage 2 (b), formation of transport dipoles is
rare, and such dipoles move only slowly, limiting transport (c).

One such transport dipole is shown advecting over a large
distance (d).
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(a) Re = 10 (b) Re = 100

(c) Re = 1000 (d) Re = 2000

(e) Re = 4000 (f) Re = 6000

FIG. 10: Displacement fields for in-phase patterns over 10 villi oscillations. Colour represents the magnitude |d(x)| at each point
x of the domain, with white arrows showing the vector d(x) at a lower spatial resolution. At low Re (Stage 1), long-timescale
vortices formed near the tip stir fluid locally (a)–(b). A mixing region near the villi tips is formed during Stage 2 (c)–(d). This

mixing region grows in size throughout Stage 3, penetrating deeper into the intervillus regions (e)–(f).

B. Fifteen Villi

We showed above how the flow generated by two oscillating
villi exhibits a variety of vortex interactions, dependent on the

phase difference of oscillations. Transport was accentuated
for the anti-phase pattern due to energy increases associated
with intensified intervillus fluxes and formation of additional
transport dipoles. To explore how villus coupling extends to
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(a) Re = 10 (b) Re = 100

(c) Re = 1000 (d) Re = 2000

(e) Re = 4000 (f) Re = 6000

FIG. 11: Displacement fields for anti-phase patterns over 10 villi oscillations. Colour represents the magnitude |d(x)| at each
point x of the domain, with white arrows showing the vector d(x) at a lower spatial resolution. During Stage 1, two entrainment
circulation vortices feed a jet-like stream along the intervillus axis (a)–(b). In stage 2, a mixing region concentrated at the villi tips

is formed (c)–(d). Throughout stage 3, the mixing region increases in space and magnitude (e)–(f).

larger scales, such as those one might encounter in a biological
or artificial gut, in this section we analyse an array of 15 villi.
For ease of comparison with previous results, we generate flow
fields for in-phase and anti-phase patterns with the same set of

parameter values as before.
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1. Development of Complexity

Numerically-computed vorticity fields are shown in figs. 12
(Multimedia view), 13 and 14 as snapshots in time for a range
of different values of Re, with both in- and anti-phase patterns;
the results are described in detail below.

In the system with 15 villi, similar instabilities to the two
villi case occur, at Reynolds numbers of the same order of mag-
nitude, as shown in figs. 12 (Multimedia view) and 13. Stage
1 behaviour consists of singular vortices attached to each tip
which flatten and intensify as inertia increases. During Stage
2, in-phase dipoles oscillate independently whereas anti-phase
dipoles flatten on approach, as shown in fig. 14a. However,
since all but the first and last villi have two neighbours, flat-
tening events occur at twice the rate as the two villi case, see
fig. 14b.

However, the increase in dipole-flattening events for the anti-
phase pattern causes new emergent behaviours to occur during
stage 3. During the first half-oscillation, dipole collisions
occur in a similar manner to the two villi case, resulting in sets
of opposing dipole pairs aligned vertically within an opened
intervillus region. Over the next half oscillation the closing of
the intervillus region forces the lower dipoles to break apart
and flow over each tip, then pairing with a generating vortex.
This results in a high strength dipole collision, similar to the
two-villi anti-phase case, but at a spacing of two intervillus
spaces. The top dipoles of this collision become so strong
by Re = 6000 that vortices advect away from the influence
of opening intervillus spaces, resulting in enhanced vertical
transport on a short timescale. As the flow grows in time,
complex vortex interactions result in increased generation of
transport dipoles with inertia.

The in-phase dynamics are comparatively tamer in Stage 3,
as shown in fig. 12 (Multimedia view). Similar to the two-villi
case, biased dipoles develop above the tips and rotate sharply
into neighbouring intervillus spaces. Complex interactions de-
velop only for Re = 6000, and occur within a smaller vertical
region compared to anti-phase oscillations. Formation of simi-
lar strength transport dipoles is rare and infrequent, indicating
reduced transport on a large timescale. However, the in-phase
pattern features regular, synchronised transport of dipoles into
neighbouring intervillus spaces, indicating possible enhance-
ment of horizontal transport.

Further confirmation of the change in behaviour due to
dipole pairing and advection can be found in the overall ki-
netic energy of the flow. Figure 15 shows time histories of the
total kinetic energy for the 15-villi cases. Both in-phase and
anti-phase cases are plotted. In both phase configurations, the
behaviour of the total energy is qualitatively and quantitatively
similar for Re = 1000 and Re = 2000. However, there is a
distinct change in its behaviour for Re > 4000. In the in-phase
case, the total kinetic energy oscillates with the villi motion
about a mean value that begins to increase from Re = 4000. In
the anti-phase case, the total kinetic energy appears to oscillate
about a mean value when Re 6 2000, however increasing to
Re = 4000 sees the kinetic energy begin to grow substantially
— so much so it indicates these cases may not have saturated or
reached statistical stationarity.

2. Transport

We compute displacement fields, defined in eq. (5), in order
to examine the transport properties of the generated flows; the
results are shown in figs. 16 and 17 (showing only the central
four villi for clarity). We find that the flow is characterised by
a region of high mean horizontal displacement, d̄(y), above the
villus tip (y≈ 1), which we refer to as the ‘peripheral region’.

Qualitatively, Stage 1 effects are similar for both in-phase
and anti-phase patterns, in that a long-timescale circulation
region is formed near each villus tip, as shown in fig. 16a–b and
fig. 17a–b. However, since the anti-phase pattern experiences
dipole flattening every half period, circulation vortices appear
at twice the rate as the in-phase pattern. Both patterns have
only limited transport between the base of the villi and the tip
in Stage 1.

During Stage 3, the comparatively large intervillus volume
flux associated with the anti-phase pattern greatly enhances the
height and displacement magnitudes of the peripheral region,
as shown in fig. 16e–f and fig. 17e–f. While the height of the
peripheral region for the in-phase pattern is clearly below the
villus length (indicated by a sharp decrease in displacement),
the region quickly grows in height for the anti-phase pattern,
reaching a peak of around 4 villus lengths for Re = 6000.

To gain a sense of scale, we average the displacement field
horizontally across the width of the computational domain,

d̄(y) =
1
X

∫ X/2

−X/2
|d(x,y)| dx, (6)

where X = 30L for our simulations. The results are shown in
fig. 18.

While the height of the peripheral region is similar for both
patterns during Stages 1 and 2, there are significant differences
during Stage 3. Throughout this stage, the in-phase pattern’s
peripheral region increases in mean displacement with an ap-
proximately fixed peripheral region height of around 2 villus
lengths, indicating enhanced horizontal transport. Conversely,
the anti-phase pattern experiences increases in both mean dis-
placement and peripheral region height, indicating enhanced
transport both horizontally and vertically. Only small increases
to mean displacement can be observed between the Re = 4000
and Re = 6000 cases, indicating a possible limit to the periph-
eral region height. This apparent saturation of the peripheral
region height which occurs for both in-phase and anti-phase
cases further confirms the distinction between stages 2 and 3
- only in stage 3 does this height begin to saturate and lose a
strong dependence on Re.

3. Mixing Number

Having gained a sense of scale for the peripheral region,
we proceed to apply a measure of ‘mixedness’, to the 15 villi
simulations, that permits quantitative comparison of mixing
in both the horizontal and vertical directions. A common
way to measure mixedness is to measure the distance between
an initial seed of tracer particles after allowing the tracers to
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(a)

Stage 2 Stage 3

(b)

FIG. 12: Development of vorticity field for 15 villi oscillating in-phase. A simple, approximately oscillatory flow consisting of
vortices attached to the tip develops during Stages 1 and 2, as shown in subfigure (a) and the left-most panel of subfigure (b). As
vortex shedding takes place during Stage 3, a small mixing region develops near the tips as shown in the centre and right-most

panel of subfigure (b). (Multimedia view)
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(a)

Stage 2 Stage 3

(b)

FIG. 13: Development of vorticity field for 15 villi oscillating anti-phase. During Stages 1 and 2 (a) converging villi tips cause
adjacent vortices to flatten against one another every half-oscillation. During Stage 3 (b), transport dipoles orientated vertically
upward form for Re≥ 4000 as a result of vortex shedding (shown clearly at t = 2.25). As the flow develops in time, the vorticity

field grows increasingly more complex. (multimedia view)
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(a) Re = 2000, t = 2

(b) Re = 2000, t = 2

FIG. 14: Comparison of local coupling effects during stage 2.
In-phase oscillations cause transport dipoles to synchronously

spill into adjacent intervillus regions (a). Anti-phase
oscillations, in contrast, form pairs of transport dipoles that
advect vertically away from the villi and into the intervillus

regions (b).

advect and diffuse for a given time48,49. Here, we use the
shortest distance between two sets of tracers using a metric
proposed in a study of mixing in ciliary locomotion29. This
metric is called the ‘mixing number’, m(t), and is defined by

m(t) =
N

∏
i=1

min
j∈{1,...,N}

(∣∣xi(t)−y j(t)
∣∣)2/N

, (7)

where xi(t) and y j(t) are the displacements of the members of
the two sets of tracer particles, and N is the number of particles
in each set. Smaller m indicates greater mixedness.

In order to compare mixing within the peripheral region
across both patterns in the horizontal and vertical directions,
we use two tracing schemes. These were formed by halving a
100×100 tracer square either vertically or horizontally, form-
ing two stripes, as shown in fig. 19a and fig. 19b. A summary
of these schemes and the directions of mixing they quantify

(a)

(b)

FIG. 15: Total kinetic energy in the fluid domain over time for
15 villi in the (a) in-phase, and (b) anti-phase cases. Each
curve represents a different Re. In both the in-phase and

anti-phase cases, the variation in energy is qualitatively and
quantitatively similar for Re = 1000 and Re = 2000, but that

is grows in magnitude for Re > 4000, reinforcing that the
boundary for the transition between stages 2 and 3 occurs

between Re = 2000 and Re = 4000.

is shown in table I. In order to compare the speed of mixing
in regions with significant transport, the square was aligned
to the bottom of the domain and size set to the length of two
villi lengths, the approximate height of the Stage 3 in-phase
peripheral region.

Scheme Name Mixing Direction Split Orientation
Horizontal Horizontal Vertical (fig. 19a,c,e,g)
Vertical Vertical Horizontal (fig. 19b,d,f,h)

TABLE I: Tracer schemes used to compute the mixing number

An example evolution of tracer particles is shown in fig. 19,
for both schemes, for 15 villi in anti-phase motion at Re= 6000.
After two cycles (fig. 19c,d) we see that while the particles
remain largely separated, they begin to overlap in the central
regions, decreasing the value of m. Following the 4th cycle
(fig. 19e,f) there is significant overlap, enhanced in part by
a transport dipole in the top-right, further decreasing m. By
the 9th cycle (fig. 19g,h) the particles overlap everywhere,
indicating a well mixed solution. Throughout this process, it
appears that the vertical scheme (fig. 19a,c,e,g) generates more
overlap than the horizontal scheme (fig. 19b,d,f,h), indicating
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(a) Re = 10 (b) Re = 100 (c) Re = 1000

(d) Re = 2000 (e) Re = 4000 (f) Re = 6000

FIG. 16: Displacement fields for in-phase motions, showing magnitude and vector displacements as above. During Stage 1 ,
localised flow circulation structures appear above the tip that transport fluid locally (a)–(b). In Stage 2 a small mixing region

appears near the tip (c)–(d). Although displacements increase in magnitude during Stage 3, the region of significantly transported
fluid particles extends only to around 1.8 villus lengths (e)–(f).

a faster change in the mixing number in the vertical direction,
as suggested by all previous analysis.

The mixing number, m(t), was computed for both in-phase
and anti-phase patterns, over the full range of Re as a function
of time; the results are shown in fig. 20, with m normalized by
m0, the value of m at the initial particle distribution. From the
definition in equation 7, it would therefore be expected that m
should initially reduce as the two blocks or strips of particles
of different colour begin to mix. If the mixing process was
purely diffusive, it may be expected that m/m0 would initially
decrease as the two colours mixed, reach a minimum, and then
slowly begin to increase again as the particles diffuse over a
larger area. The rate of the initial decrease in m/m0 would
be related to diffusivity of the particles - higher diffusivities
resulting in faster mixing would produce a more rapid rate of
decrease of m/m0. So, cases for which m/m0 decreases the
most rapidly initially are those which produce the most effec-
tive mixing. The oscillatory nature of Stage 1 flow causes m(t)

to oscillate and decrease slowly, for both the horizontal and
vertical schemes in both in- and anti-phase patterns, indicating
limited mixing over a timescale of ten oscillations. Although
m(t) decreases steadily with time across the entire range of Re
for the in-phase pattern (fig. 20a,c), the rate of mixing sharply
increases for the anti-phase pattern during Stage 3 (fig. 20b,d).

By plotting the final mixing number as a function of Re,
in fig. 20e, we see that the mixing is significantly enhanced
by increase in Re, as expected. Furthermore, since the anti-
phase pattern has significantly smaller final mixing number
than the in-phase pattern, at the same value of Re, for both
horizontal and vertical tracer schemes, we can conclude that
the anti-phase pattern is the superior pattern for both transport
and mixing.
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(a) Re = 10 (b) Re = 100 (c) Re = 1000

(d) Re = 2000 (e) Re = 4000 (f) Re = 6000

FIG. 17: Displacement fields for out of phase motions, showing magnitude and vector displacements as above. Circulation
structures spanning approximately two villus lengths in height emerge during Stages 1 and 2 (a)–(d). During Stage 3 a mixing

region quickly develops to a height of approximately three villus lengths (e)–(f).

IV. DISCUSSION

Knowledge of the hydrodynamic response of coupled villi-
like actuators across inertial scales has the potential to inspire
the design of artificial prototypes for sensing and mixing ap-
plications. Previous experimental and numerical studies on
villous motility suggests that groups of villi might coordinate
to produce efficient peripheral mixing within the transitional
flow regime25,26. To investigate mixing, we developed a simpli-
fied two dimensional computational model consisting of linear
arrays of villi-like actuators and used it to explore the flow
properties for in-phase and anti-phase oscillations through-
out the transitional flow regime. These patterns were chosen
because they maximise the difference in intervillus volume
change and thus formed a good model to explore the effect of
a change in coupling.

Simulations involving two villi, section III A, revealed sig-
nificant differences in vortex dipole formation for the in-phase
and anti-phase patterns. The converging tips of the anti-phase

pattern produced dipoles of similar strength which transport
fluid away from the villi over large distances for Re ≥ 2000.
In contrast, in-phase oscillations have a tendency to produce
biased dipoles that rotate with high curvature, resulting in
comparatively little transport. As a result, displacement fields
revealed a peripheral mixing region that grows larger and more
complex with increased inertia for the anti-phase pattern.

Augmented hydrodynamic effects were observed in arrays
of 15 villi as a result of additional couplings between neigh-
bours. During anti-phase oscillations, the ejection of fluid from
an intervillus space coincides with admission of its neighbour-
ing spaces, reducing the velocity at which fluid is propelled
upward. Since newly formed transport dipoles have a direction
of travel away from the periphery, there is a competing effect
with local intervillus volume changes. Although these com-
peting effects are approximately equal for Re≈ 2000, dipole
advection dominates for Re > 4000, resulting in the generation
of a large peripheral transport layer of height approximately
three villus lengths, as indicated in fig. 18. In contrast, in-
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(a) In-phase

(b) Anti-phase

FIG. 18: Horizontally-averaged displacement field magnitude d̄(y) (used to visualise the peripheral region) as a function of the
vertical height above the base of the domain y, for in-phase (a) and anti-phase (b) patterns. In-phase oscillations induce transport
over a peripheral height of two villus lengths across all Re tested. Anti-phase oscillations, in contrast, influence a much larger

peripheral height during Stage 3, reaching approximately 3 villus lengths. These results together indicate the anti-phase patterns
transport and mix over a larger peripheral region.

phase oscillations rarely produce transport dipoles, resulting in
a shorter peripheral region with a height of less than two villus
lengths at Re = 6000, reducing transport.

Mixing timescales were found, in section III B 3, to be con-
sistently faster for the anti-phase pattern in both the horizontal
and vertical directions. Since the largest gains in final mixing
number for the anti-phase pattern were obtained at Re≈ 2000
(fig. 20), mixing at high Re is likely driven by the advection
of transport dipoles. Thus, despite the competing effects asso-
ciated with the simultaneous admission and ejection of fluid,

the anti-phase pattern was found to be superior to the in-phase
pattern for both transport and mixing, across all inertial scales
tested.

The results imply a variety of useful control behaviours for
mixing and chemical sensing applications. Stage 1 is advanta-
geous for tip sensing as localised circulations can be induced
with minimal disturbance to the surrounding fluid. When mea-
surements within the intervillus region are required, Stage 2
could be utilised to extend the domain and mix the fluid. Lastly,
Stage 3 could employed to simultaneously mix, transport and
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(a) t = 0 (b) t = 0

(c) t = 2 (d) t = 2

(e) t = 4 (f) t = 4

(g) t = 9 (h) t = 9

FIG. 19: Tracing scheme used to calculate the mixing number for an anti-phase pattern at Re = 6000. Images (a), (c), (e) and (g)
in the left hand column show the progression of horizontal mixing over time, whereas images (b), (d), (f) and (h) shown in the

right-hand column show the progression of vertical mixing over time. As the flow develops in time, the two sets of tracers grow
closer together, indicating mixing. Only central villi are shown.
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(a) in-phase Vertical Scheme (b) anti-phase Vertical Scheme

(c) in-phase Horizontal Scheme (d) anti-phase Horizontal Scheme

(e)

FIG. 20: Mixing number m(t)/m(0) as a function of time (a)–(d), and final mixing number m(T )/m(0) as a function of Re (e),
for the two tracer schemes investigated. Across all tracing schemes and villi patterns, the mixing number decreases more rapdly at

higher Re. After 10 oscillations, the anti-phase pattern produces greater mixing in both horizontal and vertical directions.
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detect fluid within a larger peripheral region that extends above
the villi tips.

Considering robotic applications, we propose that stages
could be employed in combination to fulfil more complex
goals. For example, an MFC swimming with embedded villi
with could program a multi-stage digestion cycle. At the start
of the cycle, intake of organic material could be detected using
low-power Stage 1 dynamics. Following detection, Stage 3
could be employed to boost power output by mixing the fluid
evenly near the surface. The system could then progress to
Stage 2 to balance the needs of circulation, power efficiency
and anti-sedimentation.

V. CONCLUSION

In this paper, we investigated transport and mixing in arrays
of oscillating villi-like structures in two-dimensional, single
phase transitional flows.

By interpreting the structure of the flow as an ensemble of
interacting vortex dipole pairs, we characterised the response
to forcing by two villi across a range of length scales, revealing
the development of a mixing region from the onset of the
turbulent regime. This mixing region was found to significantly
increase transport during anti-phase oscillations at high Re
through collision of shedding vortex dipoles. With arrays
of 15 villi, we found that the anti-phase pattern significantly
increases the spatial and temporal scales of the peripheral
mixing region across transitional regimes. These increases
were driven by the formation of transport dipoles that arise as a
result of increased flux from the intervillus regions. Additional
couplings of the array of 15 villi resulted in a dramatic growth
of the height of the peripheral region, indicating that cross-
coupling between villi leads to emergent global behaviours
that enhance both transport and mixing.

Our results highlight the effectiveness of coordinated oscil-
lating volumes as a strategy for producing a peripheral mixing
region, indicating promise for the development of bioinspired
artificial villi. Given that the height of the peripheral region is
significantly larger for larger intervillus volume changes, active
variable-phase mechanisms are likely to be more advantageous
than single-phase strategies. Such gains are likely to be accen-
tuated at higher Re, where complex interactions increase the
strength of coupling across networks of villi.

The insights gained from this work may help inform knowl-
edge of digestion in chemical sensors and fluidic mixers. Since
the couplings associated with coordinated villus-like motions
can be utilised for the control of the domain of fluid circula-
tion, it would seem plausible that these effects would increase
the sensitivity of chemical probes. This could be used for the
design of future robotics and fluidic-control systems such as
MFCs and robotic fish. Of course, further work incorporat-
ing facets such as background flows, geometric and kinematic
complexity, and variable fluid properties is required to assess
the impact of these results in specific applications.

Future work will explore additional patterns, such as groups
of villi oscillating in translation as well as (or instead of) in
rotation, three-dimensional effects in extended arrays, and soft

flexible actuators that more closely represent the villi found
in real biological systems. Given the rich variety of dynamics
found here, this is expected to yield new hydrodynamic struc-
tures that could further enhance the mixing properties of the
peripheral region.
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