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A B S T R A C T

People vary in their capacity to learn and retain new motor skills. Although the relationship between neuronal
oscillations in the beta frequency range (15–30 Hz) and motor behaviour is well established, the electrophysio-
logical mechanisms underlying individual differences in motor learning are incompletely understood. Here, we
investigated the degree to which measures of resting and movement-related beta power from sensorimotor cortex
account for inter-individual differences in motor learning behaviour in the young and elderly. Twenty young
(18–30 years) and twenty elderly (62–77 years) healthy adults were trained on a novel wrist flexion/extension
tracking task and subsequently retested at two different time points (45–60min and 24 h after initial training).
Scalp EEG was recorded during a separate simple motor task before each training and retest session.

Although short-term motor learning was comparable between young and elderly individuals, there was
considerable variability within groups with subsequent analysis aiming to find the predictors of this variability. As
expected, performance during the training phase was the best predictor of performance at later time points.
However, regression analysis revealed that movement-related beta activity significantly explained additional
variance in individual performance levels 45–60min, but not 24 h after initial training. In the context of disease,
these findings suggest that measurements of beta-band activity may offer novel targets for therapeutic in-
terventions designed to promote rehabilitative outcomes.

1. Introduction

The ability to learn and retain newmotor skills is pivotal for everyday
motor activities and sustained independence in senior adults (Seidler
et al., 2010). As the old adage goes “practice makes perfect”, motor skills
initially improve with training. Motor skills also continue to develop after
practice has ended through a process of memory consolidation (Halsband
and Lange, 2006; Robertson et al., 2004). However, people show
considerable inter-individual heterogeneity in their capacity to learn,
which may be of clinical significance in the context of brain pathology
such as stroke (Stinear, 2010). Understanding the neurophysiological
processes underlying between-subject variability in skill acquisition and
consolidation may offer novel therapeutic targets for promoting

long-term rehabilitative outcomes after brain injury (Stinear, 2010;
Ward, 2017).

Imaging studies have revealed considerable experience-dependent
plasticity of sensorimotor cortex representations during motor skill
acquisition (Halsband and Lange, 2006; Karni et al., 1995; Muellbacher
et al., 2002; Nudo et al., 1996; Robertson et al., 2005; Sanes and
Donoghue, 2000). Learning requires plasticity and although plasticity
does not necessarily lead to learning, differences in the potential for
plasticity might explain variability in learning. One candidate biomarker
for the potential for plasticity is the balance between GABAergic inhib-
itory and glutamatergic excitatory processes in the brain (Bavelier et al.,
2010; Benali et al., 2008), which is reflected in the amplitude of oscil-
lations as detected by electroencephalography (EEG) (Jensen et al., 2005;
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Murakami and Okada, 2006; Traub et al., 2004; Yamawaki et al., 2008).
Here, we are interested in motor system plasticity, and sensorimotor
cortex oscillations in the beta (15–30Hz) frequency range are funda-
mental for motor control (Engel and Fries, 2010; Joundi et al., 2012;
Pogosyan et al., 2009). It is well established that beta-band oscillations
are dominant at rest, are suppressed during movement (Move-
ment-Related Beta Desynchronization, MRBD) and show a rebound after
movement cessation (Post-Movement Beta Rebound, PMBR) (Pfurtsch-
eller et al., 1998; Pfurtscheller and Lopes Da Silva, 1999; Salmelin and
Hari, 1994; Stancak and Pfurtscheller, 1995). Despite the upsurge in the
interest in neuronal oscillations and in particular beta-band oscillations
due to their potential role as markers of motor system function and
dysfunction (Nicolo et al., 2015; Takemi et al., 2015; Ward, 2015; Wu
et al., 2015), the extent to which cortical oscillations in the beta fre-
quency relate to individual differences in motor learning behaviour re-
mains incompletely understood.

Here, we explored the neurophysiological mechanisms associated
with individual differences in short-term motor learning behaviour using
EEG. We included both young and elderly subjects in order to maximise
inter-subject variability, because (i) alterations in beta oscillations have
been seen with ageing (Gaetz et al., 2010; Heinrichs-Graham andWilson,
2016; Rossiter et al., 2014), and (ii) previous studies have suggested an
age-related reduction in the potential for plasticity (Chollet, 2013; Fathi
et al., 2010; Tecchio et al., 2008; Todd et al., 2010). Specifically, given
the link between beta oscillations and both inhibitory GABAergic activity
(Hall et al., 2011, 2010; Jensen et al., 2005; Muthukumaraswamy et al.,
2013) and learning (Boonstra et al., 2007; Houweling et al., 2008; Pollok
et al., 2014), we assessed the extent to which beta oscillatory power can
explain differences in motor learning behaviour. Specifically, we
explored whether the pre- and/or post-training state of cortical activity is
of functional relevance for short-term motor learning.

2. Methods

2.1. Subjects

Twenty young (range 18–30 years, 1 left-handed; for more details see
Table 1) and twenty elderly (range 62–77 years, 1 left-handed) subjects
took part in our study over two consecutive days. Two subjects were
excluded because they either did not comply with the task requirements
or later disclosed a neurological disease. All included subjects (N¼ 38)
had normal or corrected-to-normal vision and fulfilled the following in-
clusion criteria: (a) no history of neurological or psychiatric disease; (b)
no physical disability of the arms or wrists; (c) no use of drugs affecting
the central nervous system or self-reported abuse of any drugs; and (d)
age within specified range (18–30 years or 60–80 years). To minimize
circadian fluctuations in beta oscillatory levels (Toth et al., 2007; Wilson
et al., 2014), all subjects were tested in the time between 9am and 2pm.
In addition, subjects were instructed to abstain from alcohol and caffeine
the evening and morning before the testing. The study was approved by
the National Hospital for Neurology and Neurosurgery, UCL Hospitals
NHS Foundation Trust and the local research ethics committee at Uni-
versity College London where the study was conducted. All subjects gave
written informed consent in accordance with the Declaration of Helsinki.

At the beginning of the experiment, subjects underwent assessments
of upper limb motor ability (Nine Hole Peg Test, NHPT; grip strength
using dynamometer) and cognitive functioning (Sustained Attention to
Response Test, SART). Since sleep has been shown to affect motor
memory consolidation (Korman et al., 2007; Walker et al., 2002; Wilson
et al., 2012), on both days, subjects additionally provided information
about their sleep quantity and quality (computerised version of St. Mary's
Hospital sleep questionnaire adapted from (Ellis et al., 1981)) for the
nights preceding testing.

2.2. Experimental design

The experimental design is illustrated in Fig. 1. All subjects trained
with the wrist of their non-dominant arm on a continuous tracking task
over a single training session (40 blocks; 20–40min) with the aim of
improving motor performance beyond pre-training levels. The tracking
task involved two types of sequences within each block, a random and a
repeated sequence (see below). Improvement on the random sequence is
a measure of general skill learning, whilst any additional improvement
on the repeated sequence reflects sequence-specific motor learning of the
precise sequence pattern (Wulf and Schmidt, 1997). Motor performance
was defined as the accuracy with which subject's wrist movement tracked
the target movement (Fig. 2A). Participants' motor performance was
retested at two different time points: 45–60min (retest1 on day 1; 5
blocks) and 24 h (retest2 on day 2; 10 blocks) after initial training. These
retest sessions allowed (i) temporary effects (e.g. fatigue or boredom)
that build up over the course of training (Brawn et al., 2010; Rickard
et al., 2008) to dissipate, thus only leaving the fairly stable learning ef-
fects and (ii) consolidation of motor memories to occur, which may result
in retention, decrement or even enhancement of the previously acquired
motor skill after a night's sleep (Robertson et al., 2004; Walker, 2005).

Electroencephalography (EEG) recorded during the performance of a
simple wrist flexion/extension task was used to assess changes in pre-
movement (resting) and movement-related beta activity before (Pre),
immediately after (Post1) and 24h after (Post2) the initial training phase.
By recording beta oscillatory activity during the performance of a sepa-
rate task, not used for training, but which employed comparable motion
features (flexion and extension), it was possible to investigate the generic
properties of brain activity and their relation to motor learning. The
simple wrist flexion/extension task is known to induce clear movement-
related changes in beta activity that are distinct and separate in time
(Espenhahn et al., 2016). This is not the case for continuous movements
where these beta dynamics start to overlap until they are no longer
clearly distinguishable with increasing movement tempo (Houweling
et al., 2010). Here, we were interested in linking well-established fea-
tures of movement-related beta dynamics (MRBD and PMBR) separately
to motor learning.

2.3. Apparatus and tasks

All tasks were performed with the non-dominant hand resting in an
instrumented wrist rig (modified from (Turk et al., 2008)). The rig
restricted movement to flexion and extension around the wrist joint in
the horizontal plane and ensured minimal hand and arm movement
during the experiment. Wrist angular displacement was sensed by a
built-in potentiometer, with a displacement of 0� indicating a neutral
position of the wrist, with the hand being in the same plane as the
forearm. The angular position of the wrist, sampled at 100Hz, was
continuously displayed on a computer monitor as a cursor in the form of a
red circle – hereafter referred to as “wrist cursor”. The target was dis-
played either as an open yellow circle (continuous tracking task) or as a
blue square (simple motor task). On day 1, prior to the motor tasks, the
mid-point and maxima of an individual's maximum active range of
movement (AROM) around the wrist joint was measured and subse-
quently used as start and/or target positions in the continuous tracking
task and simple motor task, respectively. Stimuli were presented using
custom software routines written in Matlab (version R2013b; The
MathWorks, Inc., Natick, MA, USA).

2.3.1. Continuous tracking task
Subjects were required to continuously track a circular target (in

yellow) that moved back and forth along a fixed arc through a predefined
sequence of 12 positions (Fig. 2A). The minimum jerk approach (Flash
and Hogan, 1985; Hogan, 1984) was employed to ensure smooth target
motion through the sequence positions. The maximum range of the target
trajectory was defined as �45� of wrist flexion and extension, and the
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target always started and finished at the individual mid-point position of
each subject's AROM.

Each block consisted of two sequences, one random and one repeated
sequence presented in randomised order, with a 3s stationary target
between both. The repeated sequence was identical throughout initial
training (40 blocks), and retest sessions (retest1 on day 1: 5 blocks;
retest2 on day 2: 10 blocks) and randomly selected from a pool of 57
difficulty-matched sequences. Each random sequence was encountered
only once; however, the same set of difficulty-matched sequences was
used across subjects. Subjects were instructed to move their wrist so as to
shift the red wrist cursor to match the movement of the target as ‘accu-
rately and smoothly as possible’.

Prior to the training, the average velocity with which the target
moved along the arc was individually determined in order to ensure that
the task was of equal difficulty for everyone at the beginning of the
training and left enough room for improvement in performance. For this
purpose, we implemented an adaptive staircase procedure, which, on any
given trial, adjusted (increased/decreased) the target velocity dependent
on the subject's preceding performance until a pre-specified criterion
range was reached. On average, subjects reached the criterion in
14.4� 4.5 trials and there was no difference in the number of trials
required between groups (t(1,36)¼ 0.94, p¼ 0.072). The individually
determined target velocity with which subjects were subsequently
trained on the continuous tracking task was applied to all sessions and

Fig. 1. Timeline of experiment. EEG was recorded during the performance of a simple wrist flexion/extension task before (Pre) and at two time points after the
training phase (Post1 and Post2). Performance on the motor learning task was retested after a time delay on the same day (retest1 on day 1, 45–60min after initial
training) and the following day (retest2 on day 2, 24h after initial training).

Fig. 2. Experimental setup and paradigms. A, Subjects were trained to track a target (yellow circle) moving back and forth along a fixed arc as accurately and smoothly as
possible. Online visual feedback in terms of a colour change of the wrist cursor (red to green) was provided at times when the wrist cursor was located inside the circular target.
Original recordings during the continuous tracking task at the beginning and end of the initial training are shown for the repeated sequence of an example participant (A, lower
panel). The solid black line represents the motion of the target, while the dashed red line represents the motion of the wrist. B, For the simple wrist flexion/extension task, subjects
were instructed to perform wrist flexion and extension to move the wrist cursor (red circle) from the initial start position (grey square) to one of two target positions (blue square)
upon target presentation. C, During both tasks, subjects sat in front of a computer monitor with their non-dominant hand rested in a wrist rig that restricted movement to flexion
and extension around the wrist joint.
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did not significantly differ between young (mean velocity
�SD¼ 55.38� 6.92 deg/s) and elderly subjects (mean velocity
�SD¼ 50.78� 9.41 deg/s) [t(36)¼ 1.71, p¼ 0.095].

During initial training and retest sessions, online visual feedback in
terms of a colour change of the wrist cursor (from red to green) was
provided at times when the subject positioned the wrist cursor inside the
circular target. In addition, at the end of each block, subjects were made
aware of their change in motor performance by presenting a score on the
screen. Prior to the start of training, subjects received explicit verbal
information regarding the presence of a repeated sequence along with a
random sequence in every block. However, they were not shown the
repeated sequence. To determine the time point at which participants
gained explicit knowledge of the repeated sequence, after each block
they had to decide (forced-choice) which of the two sequences within
each block the repeated sequence was - i.e. tell the experimenter whether
it was the first or second sequence they tracked within the block. The
trajectories of the target and subject's wrist cursor did not leave a residual
trail on the screen and hence, subjects could not visualize the entire
target sequence.

2.3.2. Simple wrist flexion and extension task
The EEGmeasures we used as explanatory variables of motor learning

were acquired separately from the learning task using a simple visually-
cued wrist flexion and extension task (Espenhahn et al., 2016). During
each trial, wrist movements were always initiated from the same start
position displayed at the centre of the screen that represented the
mid-point of a subject's individual AROM. The cue to perform wrist
flexion or extension movements was the random appearance of one of
two targets (in blue), on the left or right, equidistant from the central
start position (Fig. 2B). Each of the targets represented the subject's
maximumwrist flexion or extension position. Subjects were instructed to
move their wrist upon presentation of the target so as to shift the red
wrist cursor from the central start position to match the position of the
target in a ‘quick and discrete’ movement. The target position was dis-
played for 3s and subjects had to maintain the wrist cursor inside the
target until being cued to return to the initial start position. Once subjects
returned to the start position, the next cue to move was delivered
following a delay of 7�1s. The task comprised 120 trials, and subjects
were instructed to minimize eye movements by focusing on a centrally
located fixation cross. Movement onset was defined as the time when the
angular velocity of the wrist exceeded a threshold of 5% of the maximum
velocity and sustained this speed for at least 100 ms. Movement termi-
nation was defined as the time when the velocity fell below the threshold
for that trial for at least 500 ms. For each subject, we discarded trials in
which the movement was initiated before the cue signal, reaction time
was excessively long (>mean þ 2.5 SD), or movement time was exces-
sively long/short (>/< mean � 2.5 SD) (average ~8% of trials). This
resulted on average in 110 � 4 remaining trials. Reaction time (RT, in-
terval between visual cue and movement onset), movement time (MT,
interval between movement onset and movement termination), and peak
velocity (PV) were calculated and averaged per experimental condition.
Since movement time and peak velocity were highly correlated (r> 0.8),
we report only reaction time and movement time.

2.4. EEG recording

Scalp EEG (ANT Neuro, Asalab, The Netherlands) was continuously
recorded at 2084Hz using 64 electrodes mounted on an elastic cap
(waveguard EEG cap) according to the international 10–20 EEG system.
The impedance was kept below �5kΩ and the EEG signal was referenced
to Cz during recording. The timing of the visual cue (blue target) in the
motor task was marked in the simultaneous EEG recording, with separate
markers for each condition (flexion, extension). Surface electromyog-
raphy (EMG) using bipolar electrodes in a belly-tendon montage placed
on the wrist extensor (extensor carpi radialis longus) and flexor (flexor
carpi radialis) muscles monitored movements of the non-dominant hand.

2.5. Data analysis

2.5.1. Motor learning
Motor performance on the continuous tracking task, was parame-

trized by Root Mean Square Error (RMSE), an established measure
implemented by other motor learning studies (Al-Sharman and Sieng-
sukon, 2014; Boyd andWinstein, 2006; Roig et al., 2014; Siengsukon and
Boyd, 2009). RMSE captures the deviation of the wrist position at time i
(wi) from the target position (ti), and serves as a composite measure of
temporal and spatial measurements of time lag and distance as calculated
using the following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðti � wiÞ2
,

N

vuut

where N is the total number of time samples of the sequence in each
block. Thereby, smaller RMSE values reflect better motor performance.

RMSE was calculated for repeated and random sequences separately
and averaged across each block of the training and retest sessions. As the
beginning and end of individual training and retest sessions might not be
representative of actual motor performance (e.g. due to warm-up
decrement at the beginning or fatigue at the end) (Adams, 1961), a
linear regression model was fitted across the first and last 5 blocks of
individual training and retest sessions (approach adopted from (Water-
s-Metenier et al., 2014)). This fit provided a corrected performance es-
timate of the first and last blocks of each session (Fig. 3). Please note that
performance refers to this corrected performance estimate unless stated
otherwise.

The analysis then concentrated on six time points in order to assess
changes in motor performance across time: first block of training (T0),
last block of training (T1), first block of retest1 (T2), last block of retest1
(T3), first block of retest2 (T4), and last block of retest2 (T5). As outlined
above, various processes can occur during time periods in which the task
is not practised (i.e. between T1 and T2 or T3 and T4), such as dissipation
of temporary effects (e.g. fatigue or boredom) (Brawn et al., 2010;
Rickard et al., 2008) and motor memory consolidation (Hotermans et al.,

Fig. 3. Linear regression approach for exemplary subject. Dots represent indi-
vidual blocks of an example subject during training and retest sessions of
repeated sequence only. Black lines represent linear regression models across 5
blocks at beginning and end of individual sessions. Corrected performance es-
timates were derived from these linear regression models at six different time
points (T0¼ first block of training, T1¼ last block of training, T2¼ first block of
retest1, T3¼ last block of retest1, T4¼ first block of retest2, and T5¼ last block
of retest2) and used to subsequently assess changes in performance
with training.
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2006; Robertson et al., 2004; Walker, 2005). As such, motor performance
at T2 is most likely to reflect fairly stable learning effects unaffected by
training-induced temporary effects such as fatigue or boredom, while
performance at T4 likely indexes retention of the acquired motor skill
overnight, due to motor memory consolidation.

2.5.2. Spectral power
Pre-processing and time-frequency analysis of EEG data during the

performance of the simple motor task were performed using SPM12
(Wellcome Centre for Human Neuroimaging, http://fil.ion.ucl.ac.
uk/spm) and additional scripts written in Matlab (version R2016a; The
MathWorks Inc., Natick, MA, USA). The raw EEG signal was first offline
re-referenced to the average signal across all electrodes, bandpass filtered
between 5 and 100Hz, additionally filtered with a 50Hz notch filter to
reduce line noise contamination, and downsampled to 300Hz. Data were
epoched from�1 to 9s relative to visual cue onset (0s). Poorly performed
trials (see section 2.3.2) were excluded and the remaining EEG trials
were visually scrutinized. Trials containing artefacts (e.g. muscle acti-
vation or large eye blinks) were additionally removed. For each session,
on average 91� 12 and 87� 15 artefact-free EEG trials remained for
younger and older subjects, respectively, and the number of trials did not
differ between conditions (p> 0.1) or groups (p> 0.3, repeated-
measures ANOVA). Artefact-free EEG time-series from each single trial
were decomposed into their time-frequency representations in the
5–45Hz range with frequency steps of 0.1Hz. A 7-cycle Morlet wavelet
was used for the continuous wavelet transformation. Power (P) was
averaged across trials and rescaled in order to show changes relative to
the corresponding pre-movement baseline period (-1–0s prior to cue
onset), expressed as percentage of this baseline power (Pref):

% power ¼ P� Pref

Pref
*100

Spectral power time-series were derived from a pre-selection of
electrodes overlying the sensorimotor cortices, both contralateral and
ipsilateral to the moving hand (MRBD: ‘C4’ ‘CP4’ ‘CP2’ and ‘C3’ ‘CP3’
‘CP1’ for contra- and ipsilateral hemispheres, respectively; PMBR: ‘C2’
‘C4’ ‘CP4’ and ‘C1’ ‘C3’ ‘CP3’ for contra- and ipsilateral hemispheres,
respectively). These electrodes were selected based on prior findings
showing that the most prominent task-related changes in beta activity
were observed in these electrodes when performing the exact same
simple motor task (Espenhahn et al., 2016). These bilateral electrodes
were pooled as contralateral and ipsilateral regions of interest, respec-
tively, and combined within hemispheres (‘C4’ ‘CP4’ CP20 C20 and ‘C3’
‘CP3’ ‘CP1’ ‘C1’ for contra- and ipsilateral hemispheres, respectively) to
derive resting beta power.

To select time-frequency windows of interest that were orthogonal to
potential differences between conditions (flexion versus extension) when
the simple motor task was performed (Pre, Post1, Post2), we averaged
over conditions, sessions, and subjects for each group separately.We then
chose specific time-frequency windows based on peak changes in beta
activity in time-frequency maps of the bilateral sensorimotor regions,
which revealed clear movement-related beta-band (15–30Hz) activity in
two distinct time windows of interest. This information was used to
optimize the alignment of constant duration (1s) and width (15Hz) time-
frequency windows to capture maximum MRBD (1–2s relative to cue
onset), occurring between cue onset and movement termination, and
PMBR (young group: 5.5–6.5s relative to cue onset; elderly group: 6–7s
relative to cue onset), which emerges after movement cessation. This was
done for young and elderly subjects separately because of known age-
related reduction of beta peak frequency (Rossiter et al., 2014). Indeed,
in elderly subjects peak changes in beta activity after movement cessa-
tion appeared at lower beta frequencies (10–25Hz) and ~500ms later
compared to younger subjects, however this could not be explained by
age-related differences in return movement kinematics (Fig. 4A).
Selected time-frequency windows and electrodes applied to all subjects

and sessions, and were not adjusted individually.
Subsequently, for each individual subject, percentage decrease

(MRBD) and increase (PMBR) in beta power were extracted from the
respective 1s time windows and averaged for each EEG session (Pre,
Post1 and Post2) for the pre-selected electrodes over each hemisphere.
The absolute pre-movement (resting) baseline beta (BB) power from �1
to 0s relative to cue onset was also obtained and assessed for age-related
differences and training-related changes.

In total, 6 different beta parameter estimates were used for subse-
quent analyses: pre-movement baseline beta (absolute power), MRBD
(relative power) and PMBR (relative power) from contra- and ipsilateral
sensorimotor cortices, respectively. Importantly, these EEG measures of
resting and movement-related beta-band power have previously been
shown to have high intra-subject reliability (Espenhahn et al., 2016), a
prerequisite for exploring the relationship between individual neuro-
physiological differences and motor learning behaviour.

2.6. Statistical analysis

To assess how motor tracking performance changed over time, we
performed a repeated-measures ANOVA, with ‘group’ (2 levels: young vs
elderly) as between-subject factor and ‘sequence type’ (2 levels: repeated
vs random) and ‘time’ (5 levels: T0 vs T1 vs T2 vs T3 vs T4) as within-
subject factors. Additionally, to ensure comparable baseline perfor-
mance and thus, allow for direct comparison between age groups, a
repeated-measures ANOVA of motor performance at T0 (baseline) was
employed.

Since beta oscillations have been shown to be altered with ageing
(Gaetz et al., 2010; Heinrichs-Graham et al., 2018; Rossiter et al., 2014)
and motor learning (Boonstra et al., 2007; Gehringer et al., 2018;
Houweling et al., 2008; Mary et al., 2015; Pollok et al., 2014), measures
of resting and movement-related beta activity were evaluated applying
separate repeated-measures ANOVAs with ‘group’ (2 levels: young vs
elderly) as between-subject factor and ‘hemisphere’ (2 levels: contralat-
eral vs ipsilateral) and EEG ‘session’ (3 levels: Pre vs Post1 vs Post2) as
within-subject factors.

A Greenhouse-Geiger correction was applied whenever Mauchly's test
indicated a lack of sphericity. Post hoc Bonferroni-adjusted t-tests were
performed whenever main effects and interaction effects were detected
in the ANOVAs. Prior to ANOVAs and post hoc t-tests, Kolmogorov-
Smirnov test was used to affirm normal distribution of the data. Results
were considered significant if p-values were below 0.05. All data pre-
sented in the text and tables are represented as mean� SD unless stated
otherwise. Statistical analyses were performed using SPSS (version 22;
IBM) and custom-written Matlab routines.

2.6.1. Regression analysis
Finally, a multiple linear regression approach was employed in order

to investigate whether spectral power measures of beta-band activity
relate to individual differences in the extent ofmotor learning, accounting
for multicollinearity between neurophysiological (Heinrichs-Graham and
Wilson, 2016) andmotor performancemeasures (see light green and blue
boxes of Supplementary Fig. 1). Specifically, separate stepwise multiple
linear regression models (with forward and backward algorithm; inclu-
sion/exclusion probability levels: αEnter<0.05/αExclude>0.1)were used
to select those variables that provided a unique contribution to explaining
motor performance at T2 and T4 for the repeated and random sequence,
respectively. Motor performance at T2 reflects fairly stable learning ef-
fects unaffected by training-induced temporary effects such as fatigue or
boredom, while performance at T4 indexes retention of the acquired
motor skill overnight, reflecting motor memory consolidation. Specif-
ically, a combination of spectral power measures, including (a) baseline
beta power, (b) MRBD, and (c) PMBR from both sensorimotor cortices, as
well asmotor performancemeasures during the training session, i.e. (d) at
T0 and (e) at T1, were used to explain performance at T2, while motor
performance measures during retest1, i.e. (f) at T2 and (g) T3, were
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further included to explain performance at T4. In addition, demographic
information such as age, motor function, cognitive function and sleep
characteristics were equally included (total number of regressors: 22 and
29 for T2 andT4, respectively). All variableswere z-scored before analysis
to produce regression coefficients (β) of comparable magnitude.

Significant correlations raise the potential for beta power measures to
serve as predictors of learning outcome. To avoid overfitting and eval-
uate the predictive strength of each regression model, a leave-one-out
cross-validation (LOOCV) approach was employed (Arlot and Celisse,
2010; Picard and Cook, 1984). This cross-validation method is an
established procedure for assessing generalization of results to an inde-
pendent data set, particularly with smaller sample sizes (Huang et al.,

2011; Kang et al., 2014). The strength of the prediction model was
quantified in terms of the correlation coefficient between actual and
predicted motor performance. A permutation-test (100 iterations) was
used to assess whether the difference between the actual and predicted
performance was greater than would be expected by chance (p-value
below 0.05).

3. Results

As expected, young and elderly subjects differed in aspects of upper
limb motor ability and cognitive function (Table 1). In addition, elderly
subjects reported sleeping fewer hours compared to their younger

Fig. 4. Angular displacement profile and movement-related changes in beta activity. A, Group-averaged angular position trajectory (grey curve) and beta power time
courses for contra- and ipsilateral sensorimotor cortex for young (left panel) and elderly (right panel) subjects, respectively. Movement kinematics were similar
between both groups and illustrate the movement towards the target, the static contraction/holding phase and the return movement to the initial start position. B,
Time-frequency maps from contralateral and ipsilateral sensorimotor cortex show two distinct time windows of peak changes in beta activity (MRBD and PMBR)
indicated by black rectangles. Please note that the PMBR in elderly subjects occurred at lower beta frequencies (10–25Hz) and ~500ms later compared to younger
subjects. These time-frequency windows were tested for significant differences between groups and EEG sessions.
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counterparts, in line with studies demonstrating a decrease in total sleep
time with age (for review see (Ohayon et al., 2004)).

3.1. Presence of motor skill learning with healthy ageing

Motor performance for both young and elderly subjects at training
and retest sessions is shown in Fig. 5A. Since there were no systematic

differences in baseline (block 1) performance between young and elderly
groups [F(1,36)¼ 0.047, p¼ 0.830] or repeated and random sequences
[F(1,36)¼ 0.12, p¼ 0.730], nor an interaction effect [F(1,36)¼ 0.482,
p¼ 0.492] (Fig. 5B), we were able to directly compare performance on
the motor learning task between age groups.

A repeated-measures ANOVA on motor performance revealed a sig-
nificant main effect of ‘time’ [F(4,144)¼ 63.14, p< 0.001, effect size
ƞp2¼ 0.637] and ‘sequence type’ [F(1,36)¼ 92.56, p< 0.001, effect size
ƞp2¼ 0.720], but no effect of age [F(4,36)¼ 0.31, p¼ 0.584]. In addition, a
significant ‘time x sequence type’ interaction was found [F(4,144)¼ 19.74,
p< 0.001, effect size ƞp2¼ 0.354]. Post hoc analyses were performed to
separately assess changes in motor performance with initial training
(online) and following a shorter (retest1) or longer (retest2) time delay
during which subjects did not practice the task (offline).

3.1.1. Performance changes over the course of training
During the training phase, motor performance improved over time

(T0 vs T1) irrespective of age, but these improvements were different
between repeated and random sequences and varied considerably be-
tween individuals [F-statistics and p-values of ANOVAs are summarized
in Table 2]. Post hoc analyses revealed a significant improvement of
~19% for the repeated sequence (Δperformance¼ 2.6� 2.9 RMSE,
range¼�3.9–12.3 RMSE) [t(37)¼ 5.43, p< 0.001, effect size ƞp2¼ 0.443]
(Fig. 5C). This was not seen for the random sequence
(Δperformance¼ 0.2� 1.8 RMSE, range¼�3.8–3.2 RMSE)
[t(37)¼ 0.69, p¼ 0.489], indicating that improvements in motor perfor-
mance primarily occurred via a sequence-specific learning effect which
appeared to be unaffected by ageing.

3.1.2. Performance changes after training
After establishing that young and elderly subjects showed a compa-

rable ability to learn, next motor performance at retest1 was examined.
During the short time delay between the end of the initial training and
the retest1 session (T1 vs T2), motor performance significantly improved

Table 1
Group characteristics of young and elderly subjects.

Young Elderly Between-group
difference

N 19 19 –

Age 25� 4 69� 4 t(36)¼ -34.8,
p< 0.001

Male: Female ratio 8:11 7:12 Х 2¼0.11, p¼0.740
Handedness (Edinburgh) 94� 8 84� 21 t(23.01)¼1.86,

p¼0.076
Grip Strength [lb] 34� 11.30 27� 8.33 t(36)¼ 2.05,

p¼ 0.048
Dexterity [pegs/s] 0.67� 0.08 0.60� 0.08 t(36)¼ 2.73,

p¼ 0.010
Sustained attention (Error
score, 0–225)

8� 3.79 13� 10.70 t(22.44)¼ -2.14,
p¼ 0.043

Sustained attention (RT in
ms)

363� 70.11 446� 144.64 t(26.02)¼ -2.25,
p¼ 0.033

Sleep Quantity [hours]# 7� 0.70 6� 0.96 U¼ 70.0, p¼ 0.001
Sleep Quality (1–8)# 5.6� 1.12 5.2� 0.87 U¼130.5, p¼0.138

Between-group comparisons revealed a significant difference in NHPT, grip
strength, SART, and sleep quantity the previous night. For continuous data,
independent-samples t-tests were used to test for between-group differences. For
discrete data (#), Mann-Whitney U-tests were applied. Handedness was assessed
using the Edinburgh Handedness Inventory (Oldfield, 1971). Upper limb func-
tional measures are non-dominant hand only and sleep measures are averaged
across both days (both sleep measures were not significantly different between
day 1 and day 2, p> 0.05). Significant effects are indicated in bold. NHPT: Nine
Hole Peg Test; SART: Sustained Attention to Response Test.

Fig. 5. Motor skill learning of young and elderly subjects. A, Average motor performance (RMSE) for repeated and random sequences (solid and dashed lines
respectively) across training (day 1), retest1 (day 1) and retest2 (day 2) sessions suggest comparable performance improvements of young (blue) and elderly (red)
subjects. Vertical dashed lines represent breaks between each session. B, Corrected performance estimates at the beginning and end of training (T0, T1) and retest
(retest1: T2, T3; retest2: T4, T5) sessions. C, Performance differences (Δ) between time points, focusing on online learning (T0-T1) and offline learning across a shorter
(retest1, T1-T2) or longer (retest2, T3-T4) time delay as well as overall performance changes from baseline (T0-T2; T0-T4). Solid bars represent Δ performance on the
repeated sequence and striped bars on the random sequence. Positive and negative values, respectively, signify performance improvement and decrement. Shaded area
(A) and error bars (B, C) indicate between-subject SEM. Statistical difference from zero: *p < 0.05, **p < 0.01, ***p < 0.001, grey * p < 0.1 (trend).
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without further training for both the repeated (7% improvement,
Δperformance¼ 0.8� 1.6 RMSE, range¼�2.9–5.1 RMSE) [t(37)¼ 3.17,
p¼ 0.003, effect size ƞp2¼ 0.215] and random (9% improvement,
Δperformance¼ 1.2� 1.6 RMSE, range¼�2.3–5.2 RMSE) [t(37)¼ 4.71,
p< 0.001, effect size ƞp2¼ 0.382] sequence, indicating a boost in per-
formance early after initial training (45–60min) (Fig. 5C). Overall, per-
formance significantly improved from T0 to T2 not only for the repeated
sequence (25% improvement, Δperformance¼ 3.4� 1.9 RMSE,
range¼ 0.6–9.4 RMSE) [t(37)¼ 10.91, p< 0.001], but also the random
sequence (10% improvement, Δperformance¼ 1.4� 1.6 RMSE,
range¼�3.0–5.1 RMSE) [t(37)¼ 5.31, p< 0.001]. Again these changes
in motor performance greatly varied between individuals as indicated by
the range of performance changes.

Lastly, changes in motor performance, without practice, at 24 h
(retest2) after initial training were assessed. Performance significantly
deteriorated from T3 to T4 irrespective of age, but dependent on the type
of sequence. While motor performance on the random sequence was
retained overnight (Δperformance¼ –0.2� 1.5 RMSE, range¼�3.3–3.2
RMSE) [t(37)¼ -1.21, p¼ 0.236], significant performance decrements
(i.e. overnight forgetting) of ~13% were observed for the repeated
sequence (Δperformance¼�0.6� 1.4 RMSE, range¼�4.1–2.8 RMSE)
[t(37)¼ -5.79, p< 0.001, effect size ƞp2¼ 0.478] (Fig. 5C). Thus, while
training-related improvements in general motor performance were
retained for at least 24 h, overnight forgetting that was specific to the
repeated sequence occurred for both young and elderly subjects. Despite
these sequence-specific offline decrements, overall performance at T4
was significantly better compared to T0 for the repeated sequence (24%
improvement, Δperformance¼ 3.9� 1.9 RMSE, range¼ 0.9–9.9 RMSE)
[t(37)¼ 10.87, p< 0.001] and random sequence (12% improvement,
Δperformance¼ 1.7� 1.4 RMSE, range¼�1.4–4.1 RMSE) [t(37)¼ 7.87,
p< 0.001].

3.2. Changes in spectral power with age and training

All subjects were able to perform the simple motor task during EEG
recording and there were no significant differences in movement kine-
matics between age groups for either the movement towards the target
[RT: F(1,36)¼ 0.02, p¼ 0.896; MT: F(1,36)¼ 1.14, p¼ 0.293] nor the re-
turn movement towards the initial start position [RT: F(1,36)¼ 0.61,
p¼ 0.441; MT: F(1,36)¼ 0.58, p¼ 0.450]. Average spectral changes in
contralateral and ipsilateral sensorimotor cortices in response to wrist
movement are shown in Fig. 4B before (Pre) and at two time points
(Post1 and Post2) after the initial training. General features of the
spectral changes in beta activity induced by the simple motor task have
been detailed in a previous study (Espenhahn et al., 2016). Briefly, a
reduction in beta power, MRBD, was observed in both sensorimotor
cortices during movement towards the target and during return move-
ment to the initial start position. Following return movement cessation, a
strong but transient increase in beta power, PMBR, with a contralateral

preponderance was observed.

3.2.1. Resting beta power
Absolute beta power during the pre-movement (resting) baseline

period was significantly affected by age, with elderly subjects exhibiting
higher beta power in both contralateral and ipsilateral sensorimotor
cortices (Fig. 6A, F-statistics and p-values of all ANOVAs are summarized
in Table 3), consistent with previous observations (Heinrichs-Graham
and Wilson, 2016; Rossiter et al., 2014). While there was no hemispheric
difference in beta power and no interaction effects, absolute beta power
was significantly different between sessions. Post-hoc analyses revealed a
significant but transient increase in beta power immediately after
training (Post1) in both contralateral [Pre vs Post1: t(37)¼ -2.98,
p¼ 0.011; Post1 vs Post2: t(37)¼ 2.59, p¼ 0.032] and ipsilateral [Pre vs
Post1: t(37)¼ -4.60, p< 0.001; Post1 vs Post2: t(37)¼ 2.48, p¼ 0.05]
sensorimotor cortex which returned back to pre-training levels on day 2
[Pre vs Post2: t(37)¼ 0.28, p¼ 1.00].

3.2.2. Movement-related beta power changes
Averaged beta power changes during movement (MRBD) and after

movement cessation (PMBR) in both sensorimotor cortices and topo-
graphic maps are shown in Fig. 6C–D. Interestingly, the magnitude of
MRBD and PMBR was differentially affected by age. Elderly subjects
showed a greater beta power decrease in both sensorimotor cortices
during the movement towards the target than their younger counterparts
(Fig. 6C). In contrast, the magnitude of the power increase after move-
ment termination was not significantly different between young and
elderly subjects (Fig. 6D). As expected from an unilateral task, a signifi-
cant hemispheric difference in the magnitude of MRBD and PMBR
indicated that both beta-band dynamics were overall more pronounced
in the hemisphere contralateral to the moving hand. Also, a marginally
significant effect of ‘session’ and a significant ‘group x hemisphere x
session’ interaction was found for MRBD. Post hoc analyses indicated that
the age-related difference in the magnitude of MRBD was significant in
both sensorimotor cortices [contralateral sensorimotor cortex
F(1,36)¼ 12.93, p¼ 0.001, effect size ƞp2¼ 0.264; ipsilateral sensorimotor
cortex: F(1,36)¼ 8.12, p¼ 0.007, ƞp2¼ 0.184], but a significant linear
reduction in the magnitude of MRBD across sessions was only found in
the ipsilateral hemisphere [F(2,72)¼4.26, p¼ 0.018, effect size
ƞp2¼ 0.106].

In addition, a decrease in the magnitude of PMBR across sessions was
found, but no interactions. Post hoc analyses showed that this decrease in
PMBR across sessions was restricted to the ipsilateral sensorimotor cortex
and elderly subjects only [F(2,36)¼7.47, p¼ 0.002, effect size ƞp2¼ 0.293].
In line with this, inspection of the topographical distribution of PMBR
(Fig. 6D, right panel) confirmed a training-related change in PMBR, with
elderly subjects exhibiting a more bilateral distribution of PMBR prior to
the training which shifted towards a contralateral preponderance
following training.

Table 2
ANOVA results of subjects’ motor performance at different time points during the motor learning process.

Group Time Sequence Type Interactions

Performance changes across initial training
T0 vs T1 F(1,36)¼0.01, p¼0.933 F(1,36)¼ 17.57, p< 0.001, ƞƞp2¼ 0.328 F(1,36)¼ 30.93, p< 0.001, ƞƞp2¼ 0462 time x sequence:

F(1,36)¼ 28.33, p< 0.001, ƞƞp2¼ 0.440
Performance changes after time delay (retest1, retest2)
T1 vs T2 F(1,36)¼0.02, p¼0.895 F(1,36)¼ 25.97, p< 0.001, ƞƞp2¼ 0.419 F(1,36)¼ 65.49, p< 0.001, ƞƞp2¼ 0.645 n.s.
T3 vs T4 F(1,36)¼0.86, p¼0.361 F(1,36)¼ 20.81, p< 0.001, ƞƞp2¼ 0.366 F(1,36)¼ 106.43, p< 0.001, ƞƞp2¼ 0.747 time x sequence:

F(1,36)¼ 13.12, p¼ 0.001, ƞƞp2¼ 0.268
Overall performance changes from baseline
T0 vs T2 F(1,36)¼0.32, p¼0.575 F(1,36)¼ 93.08, p< 0.001, ƞƞp2¼ 0.721 F(1,36)¼ 19.99, p< 0.001, ƞƞp2¼ 0.357 time x sequence:

F(1,36)¼ 40.99, p< 0.001, ƞƞp2¼ 0.532
T0 vs T4 F(1,36)¼1.11, p¼0.299 F(1,36)¼ 129.77, p< 0.001, ƞƞp2¼ 0.783 F(1,36)¼ 18.70, p< 0.001, ƞƞp2¼ 0.645 time x sequence:

F(1,36)¼ 34.87, p< 0.001, ƞƞp2¼ 0.492

Significant effects are indicated in bold. T0: beginning of training session; T1: end of training session; T2: beginning of retest1; T3: end of retest1; T4: beginning of
retest2. n.s.: not significant.
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Fig. 6. Alterations in beta power and corresponding topographic maps A, Average pre-movement (resting; -1–0s) beta power was significantly higher in the elderly
group (red and light red) compared to the younger subjects (dark and light blue) for both sensorimotor cortices before (Pre), immediately after (Post1), and 24-h after
(Post2) training. B, Topographical plots of grand-averaged beta power showing the pre-selected electrodes (black diamonds) which were pooled as contralateral and
ipsilateral regions of interest. C-D, Power in the movement (1–2s; MRBD) and post-movement time window (5.5–6.5s/6–7s; PMBR) before (Pre), immediately after
(Post1), and 24-h after (Post2) training derived from contralateral and ipsilateral sensorimotor cortices of young (dark and light blue) and elderly (red and light red)
subjects indicated a differential effect of age upon these beta dynamics. Error bars indicate between-subject SEM. Significant between-group differences are indicated
with a ‘þ‘. Topographical distributions (right panels) of movement-related beta activity show differential contralateral and ipsilateral modulation patterns for MRBD
and PMBR. Note, that PMBR in elderly subjects showed a bilateral distribution before training compared to the contralateral preponderance in younger subjects (D,
right panel), but this topographical distribution shifted towards a more contralateral PMBR after the initial training.
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3.3. Beta oscillations are associated with post-training motor performance

Our results so far showed that even though young and elderly subjects
demonstrate comparable short-term motor learning, there are clear age-
related differences in beta power measures, which might explain indi-
vidual variability in motor learning performance. Thus, in order to gain
insight into the role of beta activity in explaining motor learning
behaviour, we employed a stepwise multiple linear regression approach
within a leave-one-out cross-validation (LOOCV), including young and
elderly subjects to naturally vary inter-subject differences.

This approach yielded models with three and two significant pre-
dictive factors that accounted for 74% (Fig. 7A) and 36% (Fig. 7C) of the
variance in performance on the two types of learning (sequence-specific
and general) shortly after visuomotor learning (T2), respectively. Despite
performance during the training phase being the best predictor [T0:

β¼ 0.38, t(37)¼ 4.76, p< 0.001; T1: β¼ 0.74, t(37)¼ 9.30, p< 0.001], we
found that pre-training MRBD in ipsilateral sensorimotor cortex signifi-
cantly accounted for performance at T2 on the repeated sequence
[β¼�0.19, t(37)¼ -2.41, p¼ 0.02] (Fig. 7B). Since the beta power
decrease is expressed as a negative percentage value (relative to base-
line), the negative coefficient value implies that smaller magnitude of
MRBD in ipsilateral sensorimotor cortex prior to training is associated
with better motor performance. Similarly, post-hoc pairwise correlations
revealed a non-significant negative correlation between pre-training
ipsilateral sensorimotor cortex MRBD and performance at T2
[r¼�0.31, p¼ 0.060] (Supplementary Fig. 1), which becomes signifi-
cant after regressing out performance during training as confounding
covariates [partial correlation: r¼�0.38, p¼ 0.021].

Further, we found that performance on the random sequence at T2
was predicted by a model incorporating not only performance during the
training phase [T1: β¼ 0.62, t(37)¼ 5.28, p< 0.001], but also post-
training PMBR [β¼�0.33, t(37)¼ -2.82, p< 0.01] from contralateral
sensorimotor cortex (Fig. 7D). The negative coefficient value for the
PMBR measure implies better motor performance at T2 with greater
magnitude of PMBR after training. In line, post-hoc pairwise correlation
analysis revealed a significant negative relationship between post-
training PMBR and performance at T2 on the random sequence
[r¼�0.40, p¼ 0.014] (Supplementary Fig. 1), with performance at the
end of training influencing this relationship [partial correlation:
r¼�0.43, p¼ 0.008].

Finally, neither motor performance on the repeated nor random
sequence 24 h after initial training (T4) was related to spectral power
measures after accounting for the effect of prior motor performance.
Interestingly, beyond the influence of motor performance, sleep quantity
[β¼�0.34, t(37)¼ -3.70, p< 0.001] was associated with motor perfor-
mance on the random sequence (Supplementary Fig. 2).

Table 3
ANOVA results for spectral power measures.

Group Hemisphere Session Interactions

BB F(1,36)¼ 7.01,
p¼ 0.012,
np2¼ 0.163

F(1,36)¼1.80,
p¼0.188

F(2,72)¼ 7.06,
p¼ 0.002,
np2¼ 0.164

n.s.

MRBD F(1,36)¼ 10.78,
p¼ 0.002,
ƞƞp2¼ 0.230

F(1,36)¼ 31.81,
p< 0.001,
ƞƞp2¼ 0.469

F(2,72)¼ 3.29,
p¼ 0.043,
ƞƞp2¼0.084

3-way:
F(2,72)¼ 4.10,
p¼ 0.021,
ƞƞp2¼0.102

PMBR F(1,36)¼0.01,
p¼0.939

F(1,36)¼ 21.99,
p< 0.001,
ƞƞp2¼ 0.379

F(2,72)¼ 4.17,
p¼ 0.019,
ƞƞp2¼0.104

n.s.

Significant effects are indicated in bold. BB: Pre-movement baseline beta; MRBD:
Movement-Related Beta Desynchronization; PMBR: Post-Movement Beta Rebound;
n.s.: not significant.

Fig. 7. Prediction of motor performance at
T2. Stepwise multiple linear regression pro-
vided statistically significant performance
prediction (A, C) as quantified by the corre-
lation coefficient between the actual and
predicted motor performance across healthy
subjects. Together, these motor performance
and spectral power measures accounted for
74% and 36% of variance in performance on
the repeated and random sequence, respec-
tively. Significance of these correlations was
determined by permutation-testing. B, Sub-
jects' performance during training exerted
the strongest effect on performance of the
repeated sequence. Crucially, an additional
model parameter relating to movement-
related beta activity prior to training was
negative, indicating that smaller magnitude
of MRBD is associated with better perfor-
mance. D, Similarly, performance on the
random sequence was affected by model pa-
rameters relating to motor performance and
movement-related beta activity. The nega-
tive coefficient for the beta power parameter
indicates that greater magnitude of post-
training PMBR is associated with better per-
formance at T2. Z-scored regression co-
efficients (β) quantify the influence of each
significant predictor upon performance level
at T2. Error bars represent SEM.
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4. Discussion

In the present study, we have tested for age-related differences in
visuomotor learning and in the characteristics of movement-related beta
oscillations. Firstly, we found that the degree of short-term motor
learning was comparable between young and elderly individuals. Sec-
ondly, we found age-related differences in beta oscillations, such that
older individuals exhibited higher pre-movement baseline beta power
and greater MRBD, but no differences in the magnitude of PMBR. Lastly,
we found that movement-related beta oscillatory dynamics could account
for different aspects of performance levels amongst all subjects shortly
(45–60min) after but not 24 h after visuomotor learning. Specifically,
better performance of the repeated sequence shortly after training (T2)
was related to smaller pre-training MRBD in ipsilateral motor cortex,
whereas better performance of the random sequences at T2 was related to
greater post-training PMBR in contralateral motor cortex, suggesting
different mechanisms in learning repeated and random sequences.

Healthy ageing has been argued to reduce the ability to learn new
motor skills (Boyd et al., 2008; Ehsani et al., 2015; Harrington and
Haaland, 1992; Howard and Howard, 1997; McNay and Willingham,
1998; Shea et al., 2006) or exert a detrimental effect on motor memory
consolidation (Brown et al., 2009; Howard and Howard, 1989; Spencer
et al., 2007; Wilson et al., 2012). However, there is no consensus over the
capability of the ageing brain for motor learning. Our study demon-
strated preserved short-term motor learning and retention with
advancing age. The absence of age-related deficits in motor learning may
be attributed to the characteristics of the task employed compared to
other studies (e.g. wrist vs fine finger movements) (Voelcker-Rehage,
2008) and of course may reflect age-related adaptations in motor regions
and networks of the brain as described elsewhere (e.g. (Boudrias et al.,
2012; Mattay et al., 2002; Reuter-Lorenz et al., 2000, 1999; Stern, 2009;
Ward et al., 2008; Wu and Hallett, 2005).

While young and elderly individuals showed comparable visuomotor
learning, their cortical beta oscillations during an independent motor
task were significantly different. Older subjects exhibited higher pre-
movement baseline beta power and greater MRBD, consistent with
prior literature (Gaetz et al., 2010; Heinrichs-Graham and Wilson, 2016;
Rossiter et al., 2014). Interestingly, no age-related differences in the
magnitude of PMBR were observed. Taken together, the differential ef-
fect of age on MRBD and PMBR together with their well described dif-
ferential modulation in contra- and ipsilateral hemispheres (Van Wijk
et al., 2012) is interesting and suggests that these beta-band dynamics are
maturationally distinct with distinct functional significance (Hall et al.,
2011; Muthukumaraswamy et al., 2013). At a mechanistic level, a wealth
of animal and human literature suggests that oscillatory activity in the
beta-band reflects the balance of excitation and inhibition within recip-
rocally connected networks of inhibitory GABAergic interneurons and
excitatory glutamatergic pyramidal cells (Gaetz et al., 2011; Hall et al.,
2011, 2010; Jensen et al., 2005; Muthukumaraswamy et al., 2013;
Roopun et al., 2006; Yamawaki et al., 2008). Based on previous
pharmaco-MEG studies (Hall et al., 2011, 2010; Jensen et al., 2005;
Muthukumaraswamy et al., 2013; Roopun et al., 2006; Yamawaki et al.,
2008), the age-related changes in beta power at rest and during move-
ment observed in our study could reflect increased GABAergic inhibition
in older subjects. The fact that PMBR appears unaffected by age, suggests
that its relationship with GABAergic signalling is different than that of
baseline beta and MRBD. However, despite evidence for a link between
cortical beta oscillations and GABAergic inhibition, we did not directly
measure GABA, and thus, the inferences about GABAergic inhibition in
this study are merely speculative based on measurement of beta
oscillations.

A small number of studies have reported changes in beta oscillations
in the sensorimotor cortex in the context of motor learning, reporting
greater MRBD and PMBR after training (Boonstra et al., 2007; Houweling
et al., 2008; Mary et al., 2015; Moisello et al., 2015; Nelson et al., 2017;
Pollok et al., 2014). It has been argued that these changes might

represent early plastic processes in this area associated with motor
learning. However, it is also possible that the changes are due to the
improvements in the learned behaviour itself, and so represent a per-
formance confound. In this study, we purposely selected an independent
non-learned motor task with which to probe beta oscillatory dynamics,
and did not find movement-related beta activity to be enhanced
following motor training. We did however find that, as in previous
studies (Moisello et al., 2015; Nelson et al., 2017), pre-movement resting
beta power was significantly enhanced after training. This transient
training-related modulation of beta power might be related to a reduc-
tion of cortical excitability that is akin to temporary suppression of
cortical plasticity with motor learning (Cantarero et al., 2013; Rioult--
Pedotti et al., 2007, 2000; 1998; Rosenkranz et al., 2007; Stefan et al.,
2006; Ziemann et al., 2004) as it returned to original pre-training levels
after a night's sleep.

Having looked for age-related changes in learning and beta dynamics,
we next wanted to understand whether variability in beta dynamics
could account for variability in learning. Here, we employed a regression
approach with LOOCV, to examine for variables that might predict per-
formance at T2 and at T4. Performance at T2 and T4 were, as expected,
strongly dependent on the subject's initial performance (see Supple-
mentary Fig. 1 for correlations between variables), but our approach
allowed us to ask whether different aspects of beta dynamics could ac-
count for additional varaibility in final performance over and above
initial performance. Specifically, subjects who exhibited smaller MRBD
prior to training performed better on the repeated sequence after
training. On the other hand, greater post-training level of PMBR was
identified as a significant predictor of better performance on the random
sequence. Given that, as we have discussed, MRBD and PMBR are likely
to have distinct mechanistic underpinnngs, our results also suggest that
the two types of learning (sequence-specific and general) are dependent
on different neural processes.

Smaller pre-training MRBD, likely reflecting reduced GABAergic in-
hibition (Hall et al., 2011, 2010; Muthukumaraswamy et al., 2013),
might facilitate the induction of motor cortical plasticity and result in
better motor performance. Rather unexpectedly, MRBD in the ipsilateral
rather than contralateral sensorimotor cortex was related to
sequence-specific motor performance at T2. Ipsilateral suppression of
beta oscillatory activity during unimanual movement is a
well-established phenomenon (Gross et al., 2005; Pfurtscheller et al.,
1996; Salmelin and Hari, 1994), but its functional role is not fully un-
derstood. It has been proposed that ipsilateral MRBD does not merely
reflect interhemispheric ‘cross-talk’ between motor cortices that facili-
tates movements, but may be a consequence of neural processes inhib-
iting mirror movements through interhemispheric inhibition (Jurkiewicz
et al., 2006; Van Wijk et al., 2012). Since surface electromyography
(EMG) was not recorded from both hands, it cannot be verified whether
reduced ipsilateral MRBD was associated with the occurrence of mirror
movements, even though subjects were instructed to relax their
non-moving hand and were monitored by the experimenter. Alterna-
tively, smaller ipsilateral MRBD also suggests that the suppression of beta
power during movement is more lateralized towards the contralateral
hemisphere. It could be speculated that individuals with smaller ipsi-
lateral MRBD have slightly more dexterous unimanual motor control and
therefore, perform better.

Greater post-training PMBR might reflect neural processes that
facilitate practice-dependent sensorimotor reorganization after training.
While beta activity, and by inference PMBR, has been suggested to pro-
mote the status quo of motor states (Engel and Fries, 2010; Gilbertson
et al., 2005) and has been associated with the processing of sensory
afference (Alegre et al., 2002; Cassim et al., 2001), Tan and colleagues
have recently proposed a unifying theory in which PMBR is modulated by
the history of task-relevant errors and is related to the uncertainty
associated with feedforward predictions (Tan et al., 2016, 2014). An
alternative explanation might thus be that greater post-training PMBR,
reflecting better accuracy (or less error) during the previous training,
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might then preserve motor commands or forward models that require
little updating. However, the current work was not designed to study the
role of beta-band dynamics for error monitoring, and thus, this inter-
pretation is purely speculative.

Despite beta activity being linked to motor performance on the same
day as training, motor performance 24 h after training (overnight), was
not associated with beta oscillatory measures. One potential explanation
for this lack of relationship may be that other factors have important
implications for motor skill retention. For example, sleep has been sug-
gested to play a fundamental role in retention of motor learning, with a
wide belief that it benefits motor memory consolidation (Al-Sharman and
Siengsukon, 2014; Diekelmann and Born, 2010; Fischer et al., 2002;
Nettersheim et al., 2015; Walker, 2005; Walker et al., 2002). Interest-
ingly, our findings support this notion as longer sleep duration the night
prior to the retest2 session appeared beneficial for retention of general
motor performance (random sequence) (see Supplementary Fig. 2).

A number of limitations are worth discussing in more detail. For
example, while motor sequence learning has been shown to elicit wide-
spread activity changes in the cortical-striatal network (Dayan andCohen,
2011; Doyon et al., 2003), the current study focused on beta oscillatory
activity in sensorimotor cortex only. This was not meant to imply that
training-dependent plasticity was confined to sensorimotor cortex, but
rather was based on previous work demonstrating the crucial role of
sensorimotor cortex for motor learning and early consolidation (Muell-
bacher et al., 2002; Nudo et al., 1996; Plautz et al., 2000; Robertson et al.,
2005). Further, although the experimental design attempted to minimize
the accumulation of fatigue during training by providing subjects with
ample rest between blocks, closer inspection of motor performance in
Fig. 5 still suggests a small decline in performance towards the end of the
training phase. While we purposely selected an independent non-learned
task with very similar motion features as the visuomotor learning task to
probe beta activity, we cannot entirely rule out that the difference in the
nature of the task (discrete vs continuous) might have led to a reduced
effect size in our study. Lastly, the definition of motor learning in practice
is not without ambiguity and hence a diversity of analytical approaches
are employed in experimental studies. Inaccurate deduction of learning
caused by inadequatemetric selection,might for example suggest a failure
of training, when in fact poor choice of outcome measures rather than a
lack of efficacy of training is the problem. Importantly, rather than using
normalized performance (e.g. relative to baseline) which might be
conceptually fraught (Kitago and Krakauer, 2010), we assessed learning
based on absolute performance levels. Currently the lack of standard
procedures regarding the choice of outcome measures (Huang and Kra-
kauer, 2009) makes comparisons between motor learning studies diffi-
cult. Clearly, further work is required to understand the complex
relationship between neuronal activity and motor learning, including a
unified approach to adequate motor learning metrics. Future studies
should also manipulate the balance between excitatory and inhibitory
mechanisms in order to evaluate the concurrent changes in beta oscilla-
tory dynamics and motor learning behaviour.

In conclusion, the current findings imply that accessible measure-
ments of beta activity reflect meaningful individual differences in the
motor system that can be utilized in basic research and clinical studies.
Movement-related beta desynchronization and post-movement beta
rebound explained additional variability in individual post-learning
performance differences. Given the complexity of the human nervous
system, it might not be surprising that cortical oscillations may be only
one of several factors important for motor learning. Notwithstanding,
EEG/MEG studies of cortical dynamics in humans have the potential to
bridge the gap between cellular and behavioural accounts of cortical
plasticity (Ward, 2017). In the context of disease, these findings suggest
that measurements of beta-band activity may offer novel targets for
therapeutic interventions designed to promote rehabilitative outcomes
(Ward, 2017).

Conflicts of interest

There is no conflict of interest.

Acknowledgements

The authors are grateful to Joshua Hadwen for technical testing and
assistance in EEG cap preparation. This work was supported by the
Medical Research Council (S. E., A. O. d B.), the Owerko Centre post-
doctoral funding (S.E.), the European Union's Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agree-
ment No 795866 (B. C. M. v W.) and the Wellcome Trust strategic award
for CUBRIC at Cardiff University (H. E. R.).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.03.079.

References

Adams, J.A., 1961. The second facet of forgetting: a review of warmup decrement.
Psychol. Bull. 58, 257–273.

Al-Sharman, A., Siengsukon, C., 2014. Time rather than sleep appears to enhance off-line
learning and transfer of learning of an implicit continuous task. Nat. Sci. Sleep 6,
27–36.

Alegre, M., Labarga, A., Gurtubay, I.G., Iriarte, J., Malanda, A., Artieda, J., 2002. Beta
electroencephalograph changes during passive movements: sensory afferences
contribute to beta event-related desynchronization in humans. Neurosci. Lett. 331,
29–32. https://doi.org/10.1016/S0304-3940(02)00825-X.

Arlot, S., Celisse, A., 2010. A survey of cross-validation procedures for model selection.
Stat. Surv. 4, 40–79. https://doi.org/10.1214/09-SS054.

Bavelier, D., Levi, D.M., Li, R.W., Dan, Y., Hensch, T.K., 2010. Removing brakes on adult
brain plasticity: from molecular to behavioural interventions. J. Neurosci. 30,
14964–14971 (Removing). https://doi.org/10.1523/JNEUROSCI.4812-10.2010.

Benali, A., Weiler, E., Benali, Y., Dinse, H.R., Eysel, U.T., 2008. Excitation and inhibition
jointly regulate cortical reorganization in adult rats. J. Neurosci. 28, 12284–12293.
https://doi.org/10.1523/JNEUROSCI.1952-08.2008.

Boonstra, T.W., Daffertshofer, A., Breakspear, M., Beek, P.J., 2007. Multivariate time-
frequency analysis of electromagnetic brain activity during bimanual motor learning.
Neuroimage 36, 370–377. https://doi.org/10.1016/j.neuroimage.2007.03.012.

Boudrias, M.H., Gonçalves, C.S., Penny, W.D., Park, C. hyun, Rossiter, H.E., Talelli, P.,
Ward, N.S., 2012. Age-related changes in causal interactions between cortical motor
regions during hand grip. Neuroimage 59, 3398–3405. https://doi.org/10.1016/j.
neuroimage.2011.11.025.

Boyd, L.A., Vidoni, E.D., Siengsukon, C., 2008. Multidimensional motor sequence learning
is impaired in older but not younger or middle-aged adults. Phys. Ther. 88, 351–362.
https://doi.org/10.2522/ptj.20070131.

Boyd, L.A., Winstein, C.J., 2006. Explicit information interferes with implicit motor
learning of both continuous and discrete movement tasks after stroke. J. Neurol.
Phys. Ther. 30, 10–12. https://doi.org/10.1097/01.NPT.0000282566.48050.9b.

Brawn, T.P., Fenn, K.M., Nusbaum, H.C., Margoliash, D., 2010. Consolidating the effects
of waking and sleep on motor-sequence learning. J. Neurosci. 30. https://doi.org/1
0.1523/JNEUROSCI.3295-10.2010, 13977–13982.

Brown, R.M., Robertson, E.M., Press, D.Z., 2009. Sequence skill acquisition and off-line
learning in normal aging. PLoS One 4, 1–5. https://doi.org/10.1371/journal.pon
e.0006683.

Cantarero, G., Tang, B., O'Malley, R., Salas, R., Celnik, P., 2013. Motor learning
interference is proportional to occlusion of LTP-like plasticity. J. Neurosci. 33,
4634–4641. https://doi.org/10.1523/JNEUROSCI.4706-12.2013.

Cassim, F., Monaca, C., Szurhaj, W., J-L, B., L, D., P, D., J-D, G., 2001. Does post-
movement beta synchronization reflect an idling motor cortex? Neuroreport 17,
3859–3863.

Chollet, F., 2013. Pharmacologic approaches to cerebral aging and neuroplasticity:
insights from the stroke model. Dialogues Clin. Neurosci. 15, 67–76.

Dayan, E., Cohen, L.G., 2011. Neuroplasticity subserving motor skill learning. Neuron 72,
443–454. https://doi.org/10.1016/j.neuron.2011.10.008.

Diekelmann, S., Born, J., 2010. The memory function of sleep. Nat. Rev. Neurosci. 11,
114–126. https://doi.org/10.1038/nrn2762.

Doyon, J., Penhune, V.B., Ungerleider, L.G., 2003. Distinct contributions of the cortico-
striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41,
252–262.

Ehsani, F., Abdollahi, I., Bandpei, M.A.M., Zahiri, N., Jaberzadeh, S., 2015. Motor
learning and movement performance: older versus younger adults. Basic Clin.
Neurosci. 6, 231–238.

Ellis, B.W., Johns, M.W., Lancaster, R., Raptopoulos, P., Angelopoulos, N., Priest, R.G.,
1981. The St . Mary ’ s hospital sleep Questionnaire : a study of reliability. Sleep 4,
93–97.

Engel, A.K., Fries, P., 2010. Beta-band oscillations - signalling the status quo? Curr. Opin.
Neurobiol. 20, 156–165. https://doi.org/10.1016/j.conb.2010.02.015.

S. Espenhahn et al. NeuroImage 195 (2019) 340–353

351

https://doi.org/10.1016/j.neuroimage.2019.03.079
https://doi.org/10.1016/j.neuroimage.2019.03.079
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref2
https://doi.org/10.1016/S0304-3940(02)00825-X
https://doi.org/10.1214/09-SS054
https://doi.org/10.1523/JNEUROSCI.4812-10.2010
https://doi.org/10.1523/JNEUROSCI.1952-08.2008
https://doi.org/10.1016/j.neuroimage.2007.03.012
https://doi.org/10.1016/j.neuroimage.2011.11.025
https://doi.org/10.1016/j.neuroimage.2011.11.025
https://doi.org/10.2522/ptj.20070131
https://doi.org/10.1097/01.NPT.0000282566.48050.9b
https://doi.org/10.1523/JNEUROSCI.3295-10.2010
https://doi.org/10.1523/JNEUROSCI.3295-10.2010
https://doi.org/10.1371/journal.pone.0006683
https://doi.org/10.1371/journal.pone.0006683
https://doi.org/10.1523/JNEUROSCI.4706-12.2013
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref15
https://doi.org/10.1016/j.neuron.2011.10.008
https://doi.org/10.1038/nrn2762
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref20
https://doi.org/10.1016/j.conb.2010.02.015


Espenhahn, S., de Berker, A.O., Van Wijk, B.C.M., Rossiter, H.E., Ward, N.S., 2016.
Movement-related beta oscillations show high intra-individual reliability.
Neuroimage 147, 175–185. https://doi.org/10.1016/j.neuroimage.2016.12.025.

Fathi, D., Ueki, Y., Mima, T., Koganemaru, S., Nagamine, T., Tawfik, A., Fukuyama, H.,
2010. Effects of aging on the human motor cortical plasticity studied by paired
associative stimulation. Clin. Neurophysiol. 121, 90–93. https://doi.org/10.1016/j
.clinph.2009.07.048.

Fischer, S., Hallschmid, M., Elsner, A.L., Born, J., 2002. Sleep forms memory for finger
skills. Proc. Natl. Acad. Sci. Unit. States Am. 99, 11987–11991.

Flash, T., Hogan, N., 1985. The coordination of arm movements: an experimentally
confirmed mathematical model. J. Neurosci. 5, 1688–1703.

Gaetz, W., Edgar, J.C., Wang, D.J., Roberts, T.P.L., 2011. Relating MEG measured motor
cortical oscillations to resting γ-aminobutyric acid (GABA) concentration.
Neuroimage 55, 616–621. https://doi.org/10.1016/j.neuroimage.2010.12.077.

Gaetz, W., MacDonald, M., Cheyne, D., Snead, O.C., 2010. Neuromagnetic imaging of
movement-related cortical oscillations in children and adults: age predicts post-
movement beta rebound. Neuroimage 51, 792–807. https://doi.org/10.1016/j.neu
roimage.2010.01.077.

Gehringer, J.E., Arpin, D.J., Heinrichs-Graham, E., Wilson, T.W., Kurz, M.J., 2018.
Neurophsyiological changes in the visoumotor network fter practicing a motor task.
J. Neurophysiol. 120, 239–249.

Gilbertson, T., Lalo, E., Doyle, L., Di Lazzaro, V., Cioni, B., Brown, P., 2005. Existing motor
state is favored at the expense of new movement during 13-35 Hz oscillatory
synchrony in the human corticospinal system. J. Neurosci. 25, 7771–7779. https://
doi.org/10.1523/JNEUROSCI.1762-05.2005.

Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., Schnitzler, A., 2005. Task-
dependent oscillations during unimanual and bimanual movements in the human
primary motor cortex and SMA studied with magnetoencephalography. Neuroimage
26, 91–98. https://doi.org/10.1016/j.neuroimage.2005.01.025.

Hall, S.D., Barnes, G.R., Furlong, P.L., Seri, S., Hillebrand, A., 2010. Neuronal network
pharmacodynamics of GABAergic modulation in the human cortex determined using
pharmaco-magnetoencephalography. Hum. Brain Mapp. 31, 581–594. https://doi.or
g/10.1002/hbm.20889.

Hall, S.D., Stanford, I.M., Yamawaki, N., McAllister, C.J., R€onnqvist, K.C., Woodhall, G.L.,
Furlong, P.L., 2011. The role of GABAergic modulation in motor function related
neuronal network activity. Neuroimage 56, 1506–1510. https://doi.org/10.1016/j.
neuroimage.2011.02.025.

Halsband, U., Lange, R.K., 2006. Motor learning in man: a review of functional and
clinical studies. J. Physiol. Paris 99, 414–424. https://doi.org/10.1016/j.jphysparis.
2006.03.007.

Harrington, D.L., Haaland, K.Y., 1992. Skill learning in the elderly: diminished implicit
and explicit memory for a motor sequence. Psychol. Aging 7, 425–434. https://doi.
org/10.1037/0882-7974.7.3.425.

Heinrichs-Graham, E., McDermott, T.J., Mills, M.S., Wiesman, A.I., Wang, Y.P.,
Stephen, J.M., Calhoun, V.D., Wilson, T.W., 2018. The lifespan trajectory of neural
oscillatory activity in the motor system. Dev. Cogn. Neurosci. 30, 159–168. htt
ps://doi.org/10.1016/j.dcn.2018.02.013.

Heinrichs-Graham, E., Wilson, T.W., 2016. Is an absolute level of cortical beta suppression
required for proper movement? Magnetoencephalographic evidence from healthy
aging. Neuroimage 134, 514–521. https://doi.org/10.1016/j.neuroimage.2016.04.0
32.

Hogan, N., 1984. An Organizing Principle for a Class of Voluntary Movements, vol. 4,
pp. 2745–2754.

Hotermans, C., Peigneux, P., Noordhout, A.M. De, Moonen, G., Maquet, P., 2006. Early
boost and slow consolidation in motor skill learning. Learn. Mem. 580–583. https://
doi.org/10.1101/lm.239406.1.

Houweling, S., Beek, P.J., Daffertshofer, A., 2010. Spectral changes of interhemispheric
crosstalk during movement instabilities. Cerebr. Cortex 20, 2605–2613. https://
doi.org/10.1093/cercor/bhq008.

Houweling, S., Daffertshofer, A., van Dijk, B.W., Beek, P.J., 2008. Neural changes induced
by learning a challenging perceptual-motor task. Neuroimage 41, 1395–1407.
https://doi.org/10.1016/j.neuroimage.2008.03.023.

Howard, J.H., Howard, D.V., 1997. Age differences in implicit learning of higher order
dependencies in serial patterns. Psychol. Aging 12, 634–656. https://doi.o
rg/10.1037/0882-7974.12.4.634.

Howard, D.V., Howard, J.H., 1989. Age differences in learning serial patterns: direct
versus indirect measures. Psychol. Aging 4, 357–364. https://doi.org/10.1037
/0882-7974.4.3.357.

Huang, V.S., Krakauer, J.W., 2009. Robotic neurorehabilitation: a computational motor
learning perspective. J. NeuroEng. Rehabil. 6, 5. https://doi.org/10.1186/1743-0003
-6-5.

Huang, X., Qin, G., Fang, Y., 2011. Optimal combinations of diagnostic tests based on
AUC. Biometrics 67, 568–576. https://doi.org/10.1111/j.1541-0420.2010.01450.x.

Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., Ermentrout, B., 2005. On the human
sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage 26, 347–355.
https://doi.org/10.1016/j.neuroimage.2005.02.008.

Joundi, R. a, Jenkinson, N., Brittain, J.-S., Aziz, T.Z., Brown, P., 2012. Driving oscillatory
activity in the human cortex enhances motor performance. Curr. Biol. 22, 403–407.
https://doi.org/10.1016/j.cub.2012.01.024.

Jurkiewicz, M.T., Gaetz, W.C., Bostan, A.C., Cheyne, D., 2006. Post-movement beta
rebound is generated in motor cortex: evidence from neuromagnetic recordings.
Neuroimage 32, 1281–1289. https://doi.org/10.1016/j.neuroimage.2006.06.005.

Kang, L., Liu, A., Tian, L., 2014. Linear combination methods to improve diagnostic/
prognostic accuracy on future observations. Stat. Methods Med. Res. 25, 1359–1380.
https://doi.org/10.1177/0962280213481053.

Karni, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R., Ungerleider, L.G., 1995.
Functional MRI evidence for adult motor cortex plasticity during motor skill learning.
Nature 377, 155–158. https://doi.org/10.1038/377155a0.

Kitago, T., Krakauer, J.W., 2010. Losing control: brain vs spinal cord. Neurology 74,
1250–1251. https://doi.org/10.1212/WNL.0b013e3181dd4e0f.

Korman, M., Doyon, J., Doljansky, J., Carrier, J., Dagan, Y., Karni, A., 2007. Daytime sleep
condenses the time course of motor memory consolidation. Nat. Neurosci. 10,
1206–1213. https://doi.org/10.1038/nn1959.

Mary, A., Bourguignon, M., Wens, V., Op de Beeck, M., Leproult, R., De Ti�ege, X.,
Peigneux, P., 2015. Aging reduces experience-induced sensorimotor plasticity. A
magnetoencephalographic study. Neuroimage 104, 59–68. https://doi.org/10.10
16/j.neuroimage.2014.10.010.

Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Das, S., Callicott, J.H., Weinberger, D.R.,
2002. Neurophysiological correlates of age-related changes in human motor function.
Neurology 58, 630–635. https://doi.org/Not available.

McNay, E.C., Willingham, D.B., 1998. Deficit in learning of a motor skill requiring
strategy, but not of perceptuomotor recalibration, with aging. Learn. Mem. 4,
411–420. https://doi.org/10.1101/lm.4.5.411.

Moisello, C., Blanco, D., Lin, J., Panday, P., Kelly, S.P., Quartarone, A., Di Rocco, A.,
Cirelli, C., Tononi, G., Ghilardi, M.F., 2015. Practice changes beta power at rest and
its modulation during movement in healthy subjects but not in patients with
Parkinson's disease. Brain Behav 5, 1–14. https://doi.org/10.1002/brb3.374.

Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Ko, M., Facchini, S., Boroojerdi, B.,
Poewe, W., 2002. Early consolidation in human primary motor cortex. Nature 415,
640–644.

Murakami, S., Okada, Y., 2006. Contributions of principal neocortical neurons to
magnetoencephalography and electroencephalography signals. J. Physiol. 575,
925–936. https://doi.org/10.1113/jphysiol.2006.105379.

Muthukumaraswamy, S.D., Myers, J.F.M., Wilson, S.J., Nutt, D.J., Lingford-Hughes, A.,
Singh, K.D., Hamandi, K., 2013. The effects of elevated endogenous GABA levels on
movement-related network oscillations. Neuroimage 66, 36–41. https://doi.org/10.
1016/j.neuroimage.2012.10.054.

Nelson, A.B., Moisello, C., Lin, J., Panday, P., Ricci, S., Canessa, A., Di Rocco, A.,
Quartarone, A., Frazzitta, G., Isaias, I.U., Tononi, G., Cirelli, C., Ghilardi, M.F., 2017.
Beta oscillatory changes and retention of motor skills during practice in healthy
subjects and in patients with Parkinson's disease. Front. Hum. Neurosci. 11, 1–12.
https://doi.org/10.3389/fnhum.2017.00104.

Nettersheim, A., Hallschmid, M., Born, J., Diekelmann, S., 2015. The role of sleep in
motor sequence consolidation: stabilization rather than enhancement. J. Neurosci.
35, 6696–6702. https://doi.org/10.1523/JNEUROSCI.1236-14.2015.

Nicolo, P., Rizk, S., Magnin, C., Pietro, M., Di, Schnider, A., Guggisberg, A.G., 2015.
Coherent neural oscillations predict future motor and language improvement after
stroke. Brain 138, 3048–3060. https://doi.org/10.1093/brain/awv200.

Nudo, R.J., Milliken, G.W., Jenkins, W.M., Merzenich, M.M., 1996. Use-dependent
primary motor alterations of movement representations cortex of adult squirrel
monkeys. J. Neurosci. 16, 785–807.

Ohayon, M.M., Carskadon, M.A., Guilleminault, C., Vitiello, M.V., 2004. Meta-analysis of
quantitative sleep parameters from childhood to old age in healthy Individuals :
developing normative sleep values across the human lifespan. Sleep 27, 1255–1273.

Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 97–113.

Pfurtscheller, G., Lopes Da Silva, F.H., 1999. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857.
https://doi.org/10.1016/S1388-2457(99)00141-8.

Pfurtscheller, G., Stanc�ak, A., Neuper, C., 1996. Post-movement beta synchronization. A
correlate of an idling motor area? Electroencephalogr. Clin. Neurophysiol. 98,
281–293. https://doi.org/10.1016/0013-4694(95)00258-8.

Pfurtscheller, G., Zalaudek, K., Neuper, C., 1998. Event-related beta synchronization after
wrist, finger and thumb movement. Electroencephalogr. Clin. Neurophysiol.
Electromyogr. Mot. Control 109, 154–160.
https://doi.org/10.1016/S0924-980X(97)00070-2.

Picard, R.R., Cook, R.D., 1984. Cross-validation of regression models. J. Am. Stat. Assoc.
79, 575–583. https://doi.org/10.1080/01621459.1984.10478083.

Plautz, E.J., Milliken, G.W., Nudo, R.J., 2000. Effects of repetitive motor training on
movement representations in adult squirrel monkeys: role of use versus learning.
Neurobiol. Learn. Mem. 74, 27–55. https://doi.org/10.1006/nlme.1999.3934.

Pogosyan, A., Gaynor, L.D., Eusebio, A., Brown, P., 2009. Boosting cortical activity at
Beta-band frequencies slows movement in humans. Curr. Biol. 19, 1637–1641. htt
ps://doi.org/10.1016/j.cub.2009.07.074.

Pollok, B., Latz, D., Krause, V., Butz, M., Schnitzler, A., 2014. Changes of motor-cortical
oscillations associated with motor learning. Neuroscience 275, 47–53. https://doi
.org/10.1016/j.neuroscience.2014.06.008.

Reuter-Lorenz, P.A., Jonides, J., Smith, E.E., Hartley, A., Miller, A., Marshuetz, C.,
Koeppe, R.A., 2000. Age differences in the frontal lateralization of verbal and spatial
working memory revealed by PET. J. Cogn. Neurosci. 12, 174–187. https://doi.org/1
0.1162/089892900561814.

Reuter-Lorenz, P.A., Stanczak, L., Miller, A.C., 1999. Neural recruitment and cognitive
aging: two hemispheres are better than one, especially as you age. Psychol. Sci. 10,
494–500. https://doi.org/10.1111/1467-9280.00195.

Rickard, T.C., Cai, D.J., Rieth, C.A., Jones, J., Ard, M.C., 2008. Sleep does not enhance
motor sequence learning. J. Exp. Psychol. Learn. Mem. Cogn. 34, 834–842. htt
ps://doi.org/10.1037/0278-7393.34.4.834.

Rioult-Pedotti, M.-S., Donoghue, J.P., Dunaevsky, A., 2007. Plasticity of the synaptic
modification range. J. Neurophysiol. 98, 3688–3695. https://doi.org/10.1152/jn.00
164.2007.

S. Espenhahn et al. NeuroImage 195 (2019) 340–353

352

https://doi.org/10.1016/j.neuroimage.2016.12.025
https://doi.org/10.1016/j.clinph.2009.07.048
https://doi.org/10.1016/j.clinph.2009.07.048
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref25
https://doi.org/10.1016/j.neuroimage.2010.12.077
https://doi.org/10.1016/j.neuroimage.2010.01.077
https://doi.org/10.1016/j.neuroimage.2010.01.077
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref28
https://doi.org/10.1523/JNEUROSCI.1762-05.2005
https://doi.org/10.1523/JNEUROSCI.1762-05.2005
https://doi.org/10.1016/j.neuroimage.2005.01.025
https://doi.org/10.1002/hbm.20889
https://doi.org/10.1002/hbm.20889
https://doi.org/10.1016/j.neuroimage.2011.02.025
https://doi.org/10.1016/j.neuroimage.2011.02.025
https://doi.org/10.1016/j.jphysparis.2006.03.007
https://doi.org/10.1016/j.jphysparis.2006.03.007
https://doi.org/10.1037/0882-7974.7.3.425
https://doi.org/10.1037/0882-7974.7.3.425
https://doi.org/10.1016/j.dcn.2018.02.013
https://doi.org/10.1016/j.dcn.2018.02.013
https://doi.org/10.1016/j.neuroimage.2016.04.032
https://doi.org/10.1016/j.neuroimage.2016.04.032
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref37
https://doi.org/10.1101/lm.239406.1
https://doi.org/10.1101/lm.239406.1
https://doi.org/10.1093/cercor/bhq008
https://doi.org/10.1093/cercor/bhq008
https://doi.org/10.1016/j.neuroimage.2008.03.023
https://doi.org/10.1037/0882-7974.12.4.634
https://doi.org/10.1037/0882-7974.12.4.634
https://doi.org/10.1037/0882-7974.4.3.357
https://doi.org/10.1037/0882-7974.4.3.357
https://doi.org/10.1186/1743-0003-6-5
https://doi.org/10.1186/1743-0003-6-5
https://doi.org/10.1111/j.1541-0420.2010.01450.x
https://doi.org/10.1016/j.neuroimage.2005.02.008
https://doi.org/10.1016/j.cub.2012.01.024
https://doi.org/10.1016/j.neuroimage.2006.06.005
https://doi.org/10.1177/0962280213481053
https://doi.org/10.1038/377155a0
https://doi.org/10.1212/WNL.0b013e3181dd4e0f
https://doi.org/10.1038/nn1959
https://doi.org/10.1016/j.neuroimage.2014.10.010
https://doi.org/10.1016/j.neuroimage.2014.10.010
https://doi.org/Not%20available
https://doi.org/10.1101/lm.4.5.411
https://doi.org/10.1002/brb3.374
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref56
https://doi.org/10.1113/jphysiol.2006.105379
https://doi.org/10.1016/j.neuroimage.2012.10.054
https://doi.org/10.1016/j.neuroimage.2012.10.054
https://doi.org/10.3389/fnhum.2017.00104
https://doi.org/10.1523/JNEUROSCI.1236-14.2015
https://doi.org/10.1093/brain/awv200
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref64
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/0013-4694(95)00258-8
https://doi.org/10.1016/S0924-980X(97)00070-2
https://doi.org/10.1080/01621459.1984.10478083
https://doi.org/10.1006/nlme.1999.3934
https://doi.org/10.1016/j.cub.2009.07.074
https://doi.org/10.1016/j.cub.2009.07.074
https://doi.org/10.1016/j.neuroscience.2014.06.008
https://doi.org/10.1016/j.neuroscience.2014.06.008
https://doi.org/10.1162/089892900561814
https://doi.org/10.1162/089892900561814
https://doi.org/10.1111/1467-9280.00195
https://doi.org/10.1037/0278-7393.34.4.834
https://doi.org/10.1037/0278-7393.34.4.834
https://doi.org/10.1152/jn.00164.2007
https://doi.org/10.1152/jn.00164.2007


Rioult-Pedotti, M.-S., Friedman, D., Donoghue, J.P., 2000. Learning-induced LTP in
neocortex. Science 290, 533–537.

Rioult-Pedotti, M.-S., Friedman, D., Hess, G., Donoghue, J.P., 1998. Strengthening of
horizontal cortical connections following skill learning. Nat. Neurosci. 1, 230–234.

Robertson, E.M., Pascual-leone, A., Miall, R.C., 2004. Current Concepts in Procedural
Consolidation 5, pp. 1–7.

Robertson, E.M., Press, D.Z., Pascual-Leone, A., 2005. Off-line learning and the primary
motor cortex. J. Neurosci. 25, 6372–6378. https://doi.org/10.1523/JNEUROSCI.1
851-05.2005.

Roig, M., Ritterband-Rosenbaum, A., Lundbye-Jensen, J., Nielsen, J.B., 2014. Aging
increases the susceptibility to motor memory interference and reduces off-line gains
in motor skill learning. Neurobiol. Aging 35, 1892–1900. https://doi.org/10.1016
/j.neurobiolaging.2014.02.022.

Roopun, A.K., Middleton, S.J., Cunningham, M.O., Lebeau, F.E.N., Bibbig, A.,
Whittington, M.A., Traub, R.D., 2006. A beta2-frequency (20 –30 Hz) oscillation in
nonsynaptic networks of somatosensory cortex. Proc. Natl. Acad. Sci. Unit. States Am.
103, 15646–15650. https://doi.org/10.1073/pnas.0607443103.

Rosenkranz, K., Kacar, A., Rothwell, J.C., 2007. Differential modulation of motor cortical
plasticity and excitability in early and late phases of human motor learning.
J. Neurosci. 27, 12058–12066. https://doi.org/10.1523/JNEUROSCI.2663-07.2007.

Rossiter, H.E., Davis, E.M., Clark, E.V., Boudrias, M.-H., Ward, N.S., 2014. Beta
oscillations reflect changes in motor cortex inhibition in healthy ageing. Neuroimage
91, 360–365. https://doi.org/10.1016/j.neuroimage.2014.01.012.

Salmelin, R., Hari, R., 1994. Spatiotemporal characteristics of sensorimotor
neuromagnetic rhythms related to thumb movement. Neuroscience 60, 537–550.

Sanes, J.N., Donoghue, J.P., 2000. Plasticity and primary motor cortex. Annu. Rev.
Neurosci. 23, 393–415.

Seidler, R.D., Bernard, J. a, Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T.,
Kwak, Y., Lipps, D.B., 2010. Motor control and aging: links to age-related brain
structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34,
721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005.

Shea, C.H., Park, J.-H., Braden, H.W., 2006. Age-related effects in sequential motor
learning. Phys. Ther. 86, 478–488. https://doi.org/NA.

Siengsukon, C., Boyd, L.A., 2009. Sleep to learn after stroke: implicit and explicit off-line
motor learning. Neurosci. Lett. 451, 1–5. https://doi.org/10.1016/j.neulet.2008.12.0
40.

Spencer, R.M.C., Gouw, A.M., Ivry, R.B., 2007. Age-related decline of sleep-dependent
consolidation. Learn. Mem. 14, 480–484. https://doi.org/10.1101/lm.569407.until.

Stancak, J.A., Pfurtscheller, G., 1995. Desynchronization and recovery of beta rhythms
during brisk and slow self-paced finger movements in man. Neurosci. Lett. 196,
21–24.

Stefan, K., Wycislo, M., Gentner, R., Schramm, A., Naumann, M., Reiners, K., Classen, J.,
2006. Temporary occlusion of associative motor cortical plasticity by prior dynamic
motor training. Cerebr. Cortex 16, 376–385. https://doi.org/10.1093/cercor/bh
i116.

Stern, Y., 2009. Cognitive reserve. Neuropsychologia. https://doi.org/10.1016/j.neurops
ychologia.2009.03.004.

Stinear, C.M., 2010. Prediction of recovery of motor function after stroke. Lancet Neurol.
9, 1228–1232. https://doi.org/10.1016/S1474-4422(10)70247-7.

Takemi, M., Masakado, Y., Liu, M., Ushiba, J., 2015. Sensorimotor event-related
desynchronization represents the excitability of human spinal motoneurons.
Neuroscience 297, 58–67. https://doi.org/10.1016/j.neuroscience.2015.03.045.

Tan, H.-R.M., Jenkinson, N., Brown, P., 2014. Dynamic neural correlates of motor error
monitoring and adaptation during trial-to-trial learning. J. Neurosci. 34, 5678–5688.
https://doi.org/10.1523/JNEUROSCI.4739-13.2014.

Tan, H.-R.M., Wade, C., Brown, P., 2016. Post-movement beta activity in sensorimotor
cortex indexes confidence in the estimations from internal models. J. Neurosci. 36,
1516–1528. https://doi.org/10.1523/JNEUROSCI.3204-15.2016.

Tecchio, F., Zappasodi, F., Pasqualetti, P., De Gennaro, L., Pellicciari, M.C., Ercolani, M.,
Squitti, R., Rossini, P.M., 2008. Age dependence of primary motor cortex plasticity
induced by paired associative stimulation. Clin. Neurophysiol. 119, 675–682. https
://doi.org/10.1016/j.clinph.2007.10.023.

Todd, G., Kimber, T.E., Ridding, M.C., Semmler, J.G., 2010. Reduced motor cortex
plasticity following inhibitory rTMS in older adults. Clin. Neurophysiol. 121,
441–447. https://doi.org/10.1016/j.clinph.2009.11.089.

Toth, M., Kiss, A., Kosztolanyi, P., Kondakor, I., 2007. Diurnal alterations of brain
electrical activity in healthy adults: a LORETA study. Brain Topogr. 20, 63–76. htt
ps://doi.org/10.1007/s10548-007-0032-3.

Traub, R.D., Bibbig, A., LeBeau, F.E.N., Buhl, E.H., Whittington, M. a, 2004. Cellular
mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu.
Rev. Neurosci. 27, 247–278. https://doi.org/10.1146/annurev.neuro.27.0702
03.144303.

Turk, R., Notley, S.V., Pickering, R.M., Simpson, D.M., Wright, P.A., Burridge, J.H., 2008.
Reliability and sensitivity of a wrist rig to measure motor control and spasticity in
poststroke hemiplegia. Neurorehabilitation Neural Repair 22, 684–696. https://doi
.org/10.1177/1545968308315599.

Van Wijk, B.C.M., Beek, P.J., Daffertshofer, A., 2012. Differential modulations of
ipsilateral and contralateral beta (de)synchronization during unimanual force
production. Eur. J. Neurosci. 36, 2088–2097. https://doi.org/10.1111/j.1460-9568.
2012.08122.x.

Voelcker-Rehage, C., 2008. Motor-skill learning in older adults-a review of studies on age-
related differences. Eur. Rev. Aging Phys. Act. 5, 5–16. https://doi.org/10.100
7/s11556-008-0030-9.

Walker, M.P., 2005. A refined model of sleep and the time course of memory formation.
Behav. Brain Sci. 28, 51–64 discussion 64-104. https://doi.org/10.1017/S0140525
X05000026.

Walker, M.P., Brakefield, T., Morgan, A., Hobson, J.A., Stickgold, R., 2002. Practice with
sleep makes Perfect : sleep-dependent motor skill learning. Neuron 35, 205–211.

Ward, N.S., 2017. Restoring brain function after stroke — bridging the gap between
animals and humans. Nat. Publ. Gr. 13, 244–255. https://doi.org/10.1038/nrneuro
l.2017.34.

Ward, N.S., 2015. Using oscillations to understand recovery after stroke. Brain 138,
2802–2813.

Ward, N.S., Swayne, O.B.C., Newton, J.M., 2008. Age-dependent changes in the neural
correlates of force modulation: an fMRI study. Neurobiol. Aging 29, 1434–1446. htt
ps://doi.org/10.1016/j.neurobiolaging.2007.04.017.

Waters-Metenier, S., Husain, M., Wiestler, T., Diedrichsen, J., 2014. Bihemispheric
transcranial direct current stimulation enhances effector-independent representations
of motor synergy and sequence learning. J. Neurosci. 34, 1037–1050. https://
doi.org/10.1523/JNEUROSCI.2282-13.2014.

Wilson, J.K., Baran, B., Pace-Schott, E.F., Ivry, R.B., Spencer, R.M.C., 2012. Sleep
modulates word-pair learning not motor sequence learning in halthy older adults.
Neurobiol. Aging 33, 991–1000. https://doi.org/10.1016/j.immuni.2010.12.017.
Two-stage.

Wilson, T.W., Heinrichs-Graham, E., Becker, K.M., 2014. Circadian modulation of motor-
related beta oscillatory responses. Neuroimage 102, 531–539. https://doi.org/10.
1126/scisignal.2001449.Engineering.

Wu, J., Quinlan, E.B., Dodakian, L., McKenzie, A., Kathuria, N., Zhou, R.J.,
Augsburger, R., See, J., Le, V.H., Srinivasan, R., Cramer, S.C., 2015. Connectivity
measures are robust biomarkers of cortical function and plasticity after stroke. Brain
1–11. https://doi.org/10.1093/brain/awv156.

Wu, T., Hallett, M., 2005. The influence of normal human ageing on automatic
movements. J. Physiol. 562, 605–615. https://doi.org/10.1113/jphysiol.2004.0760
42.

Wulf, G., Schmidt, R.A., 1997. Variability of practice and implicit motor learning. J. Exp.
Psychol. 23, 987–1006.

Yamawaki, N., Stanford, I.M., Hall, S.D., Woodhall, G.L., 2008. Pharmacologically
induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary
motor cortex in vitro. Neuroscience 151, 386–395. https://doi.org/10.1016/j.neuro
science.2007.10.021.

Ziemann, U., Ili�c, T.V., Ilia�c, T.V., Pauli, C., Meintzschel, F., Ruge, D., 2004. Learning
modifies subsequent induction of long-term potentiation-like and long-term
depression-like plasticity in human motor cortex. J. Neurosci. 24, 1666–1672.
https://doi.org/10.1523/JNEUROSCI.5016-03.2004.

S. Espenhahn et al. NeuroImage 195 (2019) 340–353

353

http://refhub.elsevier.com/S1053-8119(19)30286-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref78
https://doi.org/10.1523/JNEUROSCI.1851-05.2005
https://doi.org/10.1523/JNEUROSCI.1851-05.2005
https://doi.org/10.1016/j.neurobiolaging.2014.02.022
https://doi.org/10.1016/j.neurobiolaging.2014.02.022
https://doi.org/10.1073/pnas.0607443103
https://doi.org/10.1523/JNEUROSCI.2663-07.2007
https://doi.org/10.1016/j.neuroimage.2014.01.012
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref86
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref86
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref86
https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/NA
https://doi.org/10.1016/j.neulet.2008.12.040
https://doi.org/10.1016/j.neulet.2008.12.040
https://doi.org/10.1101/lm.569407.until
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref91
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref91
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref91
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref91
https://doi.org/10.1093/cercor/bhi116
https://doi.org/10.1093/cercor/bhi116
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://doi.org/10.1016/S1474-4422(10)70247-7
https://doi.org/10.1016/j.neuroscience.2015.03.045
https://doi.org/10.1523/JNEUROSCI.4739-13.2014
https://doi.org/10.1523/JNEUROSCI.3204-15.2016
https://doi.org/10.1016/j.clinph.2007.10.023
https://doi.org/10.1016/j.clinph.2007.10.023
https://doi.org/10.1016/j.clinph.2009.11.089
https://doi.org/10.1007/s10548-007-0032-3
https://doi.org/10.1007/s10548-007-0032-3
https://doi.org/10.1146/annurev.neuro.27.070203.144303
https://doi.org/10.1146/annurev.neuro.27.070203.144303
https://doi.org/10.1177/1545968308315599
https://doi.org/10.1177/1545968308315599
https://doi.org/10.1111/j.1460-9568.2012.08122.x
https://doi.org/10.1111/j.1460-9568.2012.08122.x
https://doi.org/10.1007/s11556-008-0030-9
https://doi.org/10.1007/s11556-008-0030-9
https://doi.org/10.1017/S0140525X05000026
https://doi.org/10.1017/S0140525X05000026
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref106
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref106
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref106
https://doi.org/10.1038/nrneurol.2017.34
https://doi.org/10.1038/nrneurol.2017.34
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref108
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref108
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref108
https://doi.org/10.1016/j.neurobiolaging.2007.04.017
https://doi.org/10.1016/j.neurobiolaging.2007.04.017
https://doi.org/10.1523/JNEUROSCI.2282-13.2014
https://doi.org/10.1523/JNEUROSCI.2282-13.2014
https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage
https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage
https://doi.org/10.1126/scisignal.2001449.Engineering
https://doi.org/10.1126/scisignal.2001449.Engineering
https://doi.org/10.1093/brain/awv156
https://doi.org/10.1113/jphysiol.2004.076042
https://doi.org/10.1113/jphysiol.2004.076042
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref115
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref115
http://refhub.elsevier.com/S1053-8119(19)30286-1/sref115
https://doi.org/10.1016/j.neuroscience.2007.10.021
https://doi.org/10.1016/j.neuroscience.2007.10.021
https://doi.org/10.1523/JNEUROSCI.5016-03.2004

	Cortical beta oscillations are associated with motor performance following visuomotor learning
	Citation of this paper:
	Authors

	Cortical beta oscillations are associated with motor performance following visuomotor learning
	1. Introduction
	2. Methods
	2.1. Subjects
	2.2. Experimental design
	2.3. Apparatus and tasks
	2.3.1. Continuous tracking task
	2.3.2. Simple wrist flexion and extension task

	2.4. EEG recording
	2.5. Data analysis
	2.5.1. Motor learning
	2.5.2. Spectral power

	2.6. Statistical analysis
	2.6.1. Regression analysis


	3. Results
	3.1. Presence of motor skill learning with healthy ageing
	3.1.1. Performance changes over the course of training
	3.1.2. Performance changes after training

	3.2. Changes in spectral power with age and training
	3.2.1. Resting beta power
	3.2.2. Movement-related beta power changes

	3.3. Beta oscillations are associated with post-training motor performance

	4. Discussion
	Conflicts of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


