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ABSTRACT

We report our investigation of 1SWASP J234401.81−212229.1, a variable with a 18 461.6 s period. After identification in a 2011
search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution’s short-period limit of∼0.20 d,
it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation
in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the
interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a
single-star oblique rotator model in which variability results from stable coolspots on opposite magnetic poles; a two-star model in
which the secondary is a brown dwarf; and a three-star model involvinga low-mass eclipsing binary in a hierarchical triple system.
We conclude that the latter is the most likely model.

Key words. stars: individual: 1SWASP J234401.81−212229.1 - stars: variables: general - binaries: close - binaries: eclipsing

1. Introduction

The object 1SWASP J234401.81−212229.1 (J2344) was iden-
tified as a candidate W UMa-type (contact) eclipsing binary in
Norton et al. (2011), primarily on the basis of light curve shape.
Using observations from the SuperWASP archive (Pollacco etal.
2006), a best period of 0.21367 d was found1, giving it imme-
diate interest as being very close to the observed lower limit
in the period distribution of main sequence binaries of∼0.2 d
(Rucinski 1992). Lohr et al. (2012) then found evidence of sub-
stantial period changes in J2344, which suggested rapid period
decrease on the basis of the first four years of SuperWASP
data, implying a stellar merger within 40 000 years at most.
However in Lohr et al. (2013), which found the object’s period
as 18 461.639±0.0005 s (0.21367638 d), more recently-available
SuperWASP observations supported a subsequent increase inpe-
riod: J2344 currently appears to be undergoing dramatic andap-
proximately sinusoidal variations in period length.

Two other objects from the Lohr et al. (2013) collection of
143 SuperWASP candidate eclipsing binaries with periods be-
low 20 000 s have since been followed up spectroscopically, and
in spite of relatively low S/N spectra, were confirmed as low-
mass double-lined spectroscopic and eclipsing binaries (paper
submitted to A&A). Therefore, with high-resolution spectra, the

⋆ Table 2 is only available in electronic form at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-
strasbg.fr/cgi-bin/qcat?J/A+A/

1 The corresponding object ASAS J234402−2122.5 found from
ASAS observations is listed in the AAVSO International Variable Star
Index as a W UMa-type eclipsing binary with a period of 0.2136764 d;
in the ASAS Catalog of Variable Stars as a semi-detached eclips-
ing binary, period 0.213678 d; and in the Machine-learned ASAS
Classification Catalog as aδ Scuti pulsating variable with period
0.10684 d.

prospects seemed good for confirming J2344 as a binary system,
determining its parameters and identifying the cause of itsperiod
variation. Observations were made with the Southern African
Large Telescope (SALT) in mid-2012, from which we hoped to
extract radial velocities for the system components. Moreover,
additional photometric observations of J2344 were made during
late 2012, with a view to measuring more recent eclipse timings.

Here we report the surprising results of the follow-up ob-
servations: that J2344 does not appear to be a straightforward
eclipsing binary system. It remains a mysterious object, though
certain explanations are supported by the data while othersare
ruled out. We consider three possible models, and identify one
as most plausible on current evidence. Whatever the true nature
of this object, it is hoped that this exploration will be of value
for studies of low-mass stars and variables in general.

2. Observations

2.1. Photometry

The SuperWASP archive contains 21727 photometric points for
J2344, obtained between 15 May 2006 and 2 August 2011. The
fluxes, approximately corresponding to the Johnson V band,
were corrected by Sys-Rem (Tamuz et al. 2005; Mazeh et al.
2006), and were extracted using a 3.5 pixel-radius photometric
aperture (the middle of SuperWASP’s three photometric aper-
tures), corresponding to 47.′′95. Fig. 1 shows the local star field,
including two nearby sources evaluated for their possible con-
tribution to the observed SuperWASP light curve. Periods and
period changes were measured using a custom IDL program, de-
scribed in Lohr et al. (2013), resulting in a high-precisionphase-
folded light curve.

Additional photometric observations were made of J2344
and nearby sources by D. Boyd in the southern UK, for 0.5 h
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Fig. 1. Local star field of J2344 (a). The outer circle shows the field of
view of the SALTICAM imager; the inner is that of the Robert Stobie
Spectrograph (RSS). The diagonal line shows the angle of the spectro-
graph slit, chosen to include potential comparison stars b and d. Sources
b and c would have fallen within the SuperWASP photometric aperture
for J2344.

on 18 December and 1.1 h on 29 December 2012. A 0.35 m
telescope with Starlight Xpress SXV-H9 CCD was used (pixel
size 12.9µm = 1.′′2). On 18 December, the average FWHM was
3.′′6, air mass 3.4, and exposure duration 30 s; on 29 December
the corresponding values were 5.′′6, 5.7 and 60 s; both nights
were affected by moonlight and low-altitude haze. One addi-
tional eclipse timing (HJD 2456291.33132) was determined,and
the variability and magnitudes of several sources in the vicinity
of J2344 were measured, using comparison stars GSC 06410-
00829, GSC 06410-01027 and GSC 06410-00871 (magnitudes
obtained from AAVSO APASS survey).

2.2. Spectroscopy

53 long-slit spectra were taken for J2344 according to an auto-
mated schedule, by duty astronomers at SALT (Buckley et al.
2006), using the PG1800 grating on the RSS (Burgh et al. 2003)
on 1 June (16×60 s), 2 July (16×60 s), 1 August (4×60 s) and
3 August (16×60 s; 1×12 s). By chance there was substantial
overlap in the phases covered by the second and fourth nightsof
observation; a total phase coverage of∼22% was achieved. The
slit, with a width of 0.′′9, was intended to be aligned at 35.75◦

to capture two nearby stars for potential comparison with J2344
(see Fig. 1), but this was achieved to varying extents duringthe
second, third and fourth nights, and not at all during the first
night. A wavelength range of∼5800–7100 Å was covered, to in-
clude the Na I D doublet, Hα and a large number of narrow metal
lines characteristic of cool stars.

Primary reduction was carried out by the SALT pipeline,
using the PySALT software package2 (Crawford et al. 2010).
This included fidelity checking, gain and cross-talk correction,
overscan bias subtraction and amplifier mosaicking. Masterbias
subtraction is not suggested for SALT data; also, flat-fielding,
cosmic-ray rejection and fringe subtraction were not imple-

2 http://pysalt.salt.ac.za/

Fig. 2. SuperWASP light curve for J2344, folded at period of
18 461.639 s, with binned mean curve overplotted.

mented in the pipeline at the time, pending calibration. After
initial attempts to use unflattened spectra, a master flat wascon-
structed as a median of 10 flats supplied with the August spec-
tra, and applied to all program images. Spectra were then opti-
mally extracted using standard IRAF routines (which effectively
cleaned out cosmic rays), and calibrated using neon arc lamp
exposures. A resolution of∼0.41 Å per pixel was obtained.

In the apparent absence of visible line splitting or shifting
in the spectra, no data-internal determination of phase waspos-
sible. Therefore phases were assigned to the spectra using a
SuperWASP ephemeris in combination with D. Boyd’s more re-
cent eclipse timing. The source’s spectral type was confirmed
by cross-correlation using the IRAF task FXCOR, with com-
parison templates drawn from the Indo-U.S. Library of Coudé
Feed Stellar Spectra (Valdes et al. 2004), which uses a compa-
rable resolution (0.44 Å) and wavelength range (3460–9464 Å).
Cross-correlation with a program spectrum of phase 0 was used
to measure radial velocities (RVs), since the assumed two com-
ponent spectra would be coincident during the primary eclipse.

3. Results

Fig. 2 shows J2344’s light curve, folded at its optimal period
of 18 461.639 s. There is a small but consistent difference in
the depths of primary and secondary minima, and continuous
light variation, explaining its preliminary identification as an
eclipsing binary in thermal contact. However, we may note the
small amplitude of variation relative to the maximum or ‘out-
of-eclipse’ flux level of∼22 units (∼11.6 V mag): only about
1/11 of the light is lost during the assumed primary eclipse. This
would imply a low angle of inclination of the system, a low mass
ratio, and/or a third light entering the aperture.

Lohr et al. (2013) discusses the period changes we observed
in J2344, and its Figs. 5 and 6 illustrate the best linear and
quadratic fits to the data. The first four years suggested a rapid
period decrease (reflected in an O−C parabola opening down-
wards), but the most recent year of SuperWASP data conflicted
with this model (χ2 = 17.83); assuming a half-cycle error in
the primary minimum fits of the final year’s data improved the
quadratic fit (χ2 = 10.86) but left Year 4 now visibly discrepant.
Here, Fig. 3 gives the best sinusoidal fit to the SuperWASP data
and the additional observation of a primary minimum from 2012;
this provides an optimal model (χ2 = 2.82), and suggests a
meta-period for J2344 of 4.19±0.04 years, with an amplitude
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Fig. 3. O−C diagram for J2344, following subtraction of best linear
fit. Best sinusoidal fit is overplotted (meta-period 4.19 y;χ2 = 2.82).
Uncertainties on individual points are not shown for clarity, but are
typically of the order of±100 s. The final point, around epoch 9000,
corresponds to the independent observation of D. Boyd, and has an un-
certainty of±60 s.

Fig. 4. SALT spectrum at phase 0.588. The gaps around 6250 and
6700 Å correspond to the boundaries of the three CCDs.

of 631±11 s. The observed times of minima are listed in Table 2
(only available in electronic form at the CDS).

Fig. 4 shows an example full extracted and calibrated spec-
trum for J2344. The best-matching comparison spectra were
around K5V (temperatures between 4000 and 4500 K), achiev-
ing cross-correlation peak heights in excess of 0.95. However,
to our surprise, little to no splitting or even shifting of the many
well-defined absorption lines observed was apparent to the eye,
as would be expected in a close, short-period eclipsing binary
(Fig. 5). Only for spectra near phase 0.25 is there any suggestion
of a leftward shift, and unfortunately, these spectra are byfar the
faintest of all four sets of observations, reducing their reliability.
Moreover, an approximate light curve extracted from the spectra
themselves (by fitting a spline to each continuum and evaluating
it at a given wavelength) did not reflect the SuperWASP light
curve at all, being apparently dominated by systematic effects.

Table 1 gives the heliocentric times, estimated phases and
RVs for J2344’s spectroscopic observations. Only one clear
cross-correlation peak was seen for each spectrum, rather than
the two that we would expect for an eclipsing binary. (Repetition
of the measurements using a template K5V spectrum produced

Fig. 5. Sections of SALT spectra around Hα line at 6562.8 Å, selected
from the four nights of observation, and covering as wide a phase range
as possible (phases shown on left).

Fig. 6. RV curve for J2344. First night’s observations are plotted with
triangles; second night: squares; third night: crosses; fourth night: dia-
monds.

very similar results, apart from a systematic offset due to relative
centre-of-mass system velocities.) Fig. 6 plots the resulting RV
curve against phase. We may note that the amplitude of variation
is very small: only±5 km s-1, where we might expect values of
tens or hundreds of km s-1. Also, such trends as are suggested
over the orbital cycle do not seem to correspond to expected ve-
locity changes for either component of a spectroscopic binary:
some sort of maximum appears around phase 0.9 during the re-
gion of overlapping phase coverage, but this is when we expect
the primary’s RV to be decreasing, and the secondary’s to be
increasing; phase 0.25 should correspond to the primary’s min-
imum RV and the secondary’s maximum, but actually shows a
rising trend in our plot.

4. Discussion

Our spectroscopic results were not as expected given the pho-
tometric data for J2344. Its SuperWASP light curve (and in-
deed, the ASAS light curve of the corresponding source)
strongly suggests a very short period eclipsing binary in con-
tact configuration, like those of 1SWASP J150822.80−054236.9
and 1SWASP J160156.04+202821.6, which were recently con-
firmed as spectroscopic double-lined and eclipsing binaries, on
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Table 1. Summary of spectroscopic observations and RVs for J2344

HJD Phase RV δ RV HJD Phase RV δ RV
−2450000 (km s-1) (km s-1) −2450000 (km s-1) (km s-1)
6079.6205 0.197 0.1 2.2 6110.5461 0.928 -0.2 1.7
6079.6214 0.201 -1.1 1.5 6110.5480 0.937 -0.6 1.3
6079.6222 0.205 -2.0 1.8 6110.5489 0.941 -0.8 1.5
6079.6231 0.209 -0.6 1.9 6110.5498 0.945 -2.0 1.3
6079.6252 0.219 1.0 1.8 6110.5506 0.949 -1.3 1.2
6079.6261 0.223 1.3 2.0
6079.6270 0.228 2.9 2.6 6141.4557 0.584 3.7 1.2
6079.6278 0.231 1.0 2.0 6141.4566 0.588 3.9 1.5
6079.6300 0.242 2.7 2.4 6141.4575 0.593 2.6 1.3
6079.6309 0.246 1.4 1.8 6141.4583 0.596 3.2 1.3
6079.6317 0.250 -0.2 2.3
6079.6326 0.254 1.3 2.1 6143.4463 0.900 4.8 1.3
6079.6348 0.264 0.9 2.0 6143.4471 0.904 3.9 1.4
6079.6357 0.268 0.2 1.9 6143.4480 0.908 4.9 1.2
6079.6366 0.272 3.2 1.9 6143.4489 0.912 5.5 1.2
6079.6375 0.277 4.3 1.8 6143.4534 0.933 5.7 1.0

6143.4543 0.938 5.3 1.4
6110.5340 0.871 0.3 1.7 6143.4552 0.942 5.2 1.2
6110.5349 0.876 0.8 2.1 6143.4560 0.946 5.3 0.9
6110.5358 0.880 1.0 1.5 6143.4607 0.968 5.0 1.0
6110.5367 0.884 1.1 2.0 6143.4616 0.972 2.9 0.9
6110.5387 0.893 1.5 1.8 6143.4625 0.976 3.4 1.1
6110.5396 0.898 1.3 1.4 6143.4640 0.983 4.7 1.3
6110.5405 0.902 2.0 1.4 6143.4647 0.986 3.2 0.9
6110.5413 0.906 1.3 1.6 6143.4675 0.999 0.0 0.0
6110.5434 0.915 1.2 1.5 6143.4684 0.004 -1.1 1.1
6110.5443 0.920 0.6 1.6 6143.4693 0.008 -2.8 0.9
6110.5452 0.924 0.7 1.6 6143.4702 0.012 -4.6 0.9

Fig. 7. Best light curve fit for PHOEBE model 1 of eclipsing binary as-
suming primary has mass consistent with K5V star, and secondary is
massive enough to burn hydrogen (i = 44◦, q = 0.11, M1 = 0.73M⊙,
M2 = 0.08M⊙). Binned input SuperWASP light curve shown with dia-
monds and uncertainty bars; fit with dotted line.

the basis of fairly low-resolution INT spectra, and modelled as
contact systems (paper submitted to A&A). However, the SALT
spectra for J2344 showed little to no evidence for line splitting
or shifting, being instead strongly consistent with a single, stable
mid-K star.

To confirm our impression of the inconsistency of the pho-
tometric and spectroscopic results, modelling was carriedout
using the eclipsing binary modelling software PHOEBE (Prša
& Zwitter 2005), built upon the code of Wilson & Devinney
(1971). Figs. 7 to 10 illustrate the best light curve and RV curve

Fig. 8. Best primary RV curve fit for PHOEBE model 1 (parameters as
for Fig. 7). SALT RV curve shown with diamonds and uncertainty bars;
fit with dotted line.

fits for two models: one optimising light curve fit and the sec-
ond optimising RV curve fit. Input parameters of semi-major
axis and mass ratio were constrained by the requirements that
the more massive star in the assumed binary be consistent with
a K5V spectrum, and its companion be massive enough to burn
hydrogen, so that the system contains two main sequence stars.
It may be seen that, with the minimum mass ratioq = 0.11, the
observed light curve can be tolerably reproduced with a mod-
erate angle of inclinationi = 44◦ (Fig. 7), but the correspond-
ing primary RVs are then about three times larger than observed
(Fig. 8). However, ifi is reduced far enough to bring the mod-
elled RV curve into the observed range (Fig. 10), the correspond-
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Fig. 9. Best light curve fit for PHOEBE model 2 of eclipsing binary
assuming primary has mass consistent with K5V star, and secondary is
massive enough to burn hydrogen (i = 10◦, q = 0.11, M1 = 0.73M⊙,
M2 = 0.08M⊙).

Fig. 10. Best primary RV curve fit for PHOEBE model 2 (parameters as
for Fig. 9).

ing light curve model has far too small an amplitude (Fig. 9).
Higher mass ratios fail to reproduce either light curve or RV
curve, at any angle of inclination. Therefore we conclude that
the observed photometry and spectroscopy, taken together,are
incompatible with any low-mass eclipsing binary composed of
main sequence stars.

One initial explanation considered was that J2344 was not in
fact the source of the light variability observed by SuperWASP
(and ASAS). Objects b and c, shown in Fig. 1, are close enough
to J2344 to have fallen within the same SuperWASP photomet-
ric aperture. Could one of these be the expected eclipsing bi-
nary? Object b was captured within the SALT slit during three
nights of observations, so its spectrum was also extracted and
reduced. Although much fainter and noisier than J2344’s spec-
trum, the strongest absorption lines (Hα and Na I D) were con-
sistently visible, but showed no signs of shifting or splitting.
Also, the SuperWASP archive contains a light curve for ob-
ject b (1SWASP J234403.11-212205.8) which we obtained and
analysed; in the 3.5 pixel aperture it showed similar variabil-
ity to J2344, but in the smaller 2.5 pixel aperture, which should
have excluded most of its neighbour’s flux, its variability was
less periodic, while J2344’s light curve exhibited the sameperi-
odic behaviour even in the small aperture. Finally, D. Boyd con-

Fig. 11. PHOEBE images of spotted star model at phases 0.0, 0.25 and
0.5, from left to right.

Fig. 12. Best light curve fit for PHOEBE spotted star model.

firmed from his 18 December 2012 observations of the field of
view that object b had an (unfiltered) magnitude of 15.46±0.21,
corresponding to a SuperWASP flux variation of only about
±0.3 units: far smaller than J2344’s amplitude of±1 unit. He
also noted that object c did not surpass his sky background level
of 16.5–17.0 mag; it therefore would have been too faint to be
detectable by SuperWASP, with its range of∼8–15V mag. We
must conclude, then, that J2344 really is the source of the peri-
odic photometric variation observed.

What, then, might explain an object with the light curve of a
short-period binary but the spectrum of a single star? Moreover,
what is the source of its dramatic period changes, with their
4.19 y meta-cycle? We have explored three physical models
which provide potential explanations for these observations.

4.1. One-star model

Our first model regards J2344 as what its spectrum indicates:
a single mid-K dwarf, rotating with a period of 18 461.6 s. The
low amplitude of light curve variability would be consistent with
rotational variation caused by cool surface spots. However, the
alternating deeper and shallower minima at phases 0.0 and 0.5
(Fig. 2), observed over many years of ASAS and SuperWASP
data, would require two large stable spots of different areas
and/or temperatures, located on diametrically-opposite sidesof
the star (Fig. 11). This could be achieved if the spots were some-
how pinned to the star’s magnetic poles (Harrison et al. (2012)
claimed similar cool stable polar spots on many K-class rota-
tional variables observed with Kepler), and if the star werean
oblique rotator (Stibbs 1950), having its magnetic axis at an an-
gle to its axis of rotation. The small RV excursions from zero
would then be caused by a form of the Rossiter-McLaughlin
effect (Rossiter 1924; McLaughlin 1924) associated with the
spots, as observed by Huber et al. (2009). Precession due to the
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Fig. 13. Best RV curve fit for PHOEBE spotted star model.

different alignments of magnetic and rotational axes might ex-
plain the 4.19 y meta-cycle of period changes (Monaghan 1968).

Using PHOEBE again to test this idea, we modelled a single
rotational variable in similar fashion to Harrison et al., setting the
input orbital period to the assumed rotational period and turning
off the light from the detached companion. Since we were in-
terested in reproducing the RVs as well as the light curve, we
set the mass ratio as low as possible so that the modelled curves
were both flat before the introduction of spots. The (primary)
star was given a mass and effective temperature consistent with
a K5V spectrum, andi was set to 90◦ for simplicity. Two spots
were then added to the primary in accordance with the model,
and adjusted manually until reasonable light and RV curve fits
were obtained. The final spot location parameters were colati-
tudes 35◦ and 145◦ and longitudes 0◦ and 180◦ respectively, to
simulate stable location on the poles of a magnetic axis at 35◦

to the rotational axis. One was given a slightly larger radius (26◦

vs. 25◦) to reproduce the different depths of light curve minima,
but both were set to the same temperature (20% of average).

Figs. 12 and 13 show the resulting fits. The light curve is
fairly well reproduced, both in amplitude and different minima
depths. The fitted RV curve is somewhat smaller in amplitude
than that observed, but does match some of the velocity trends in
the observed curve, notably the maximum around phase 0.9 and
the rising trend around phase 0.25. Better fits might be obtained
by modelling non-spherical spots, but these initial results may at
least serve as proof of concept. A greater problem for the one-
star model is the lack of evidence (to our knowledge) for other
low-mass oblique rotators.

4.2. Two-star model

Our second model for J2344 takes the light curve at face value,
seeing it as an eclipsing binary in contact configuration, with a
mid-K dwarf as primary, and a secondary component making
a very limited contribution to the spectrum. In order to repro-
duce the observed amplitude of RV variation (associated with
the primary, in this model), the secondary’s mass must be in
the brown dwarf range (Fig. 14). The observed shape of the RV
curve would then be due to the Rossiter-McLaughlin effect as
the secondary obscures each side of the primary in turn, and the
4.19 y meta-cycle of period changes could be explained by the
Applegate mechanism (Applegate 1992).

A PHOEBE model withi = 59◦, q = 0.025, M1 = 0.79M⊙
andM2 = 0.02M⊙ produced an excellent fit to the observed light

Fig. 14. PHOEBE image of K dwarf+brown dwarf binary model at
phase 0.9.

Fig. 15. Best light curve fit for PHOEBE K dwarf+brown dwarf binary
model.

curve amplitude and shape, though the different depths of min-
ima could not be easily reproduced (Fig. 15). The RV fit (Fig. 16)
was of slightly greater amplitude than the observed curve, but its
Rossiter-McLaughlin effect-induced variations matched the ve-
locity trends reasonably well, as with the spotted star model. We
note, however, that PHOEBE is not intended to model planetary-
mass companions, and may not model well objects in the brown
dwarf range either, so these model outputs should be regarded
with caution.

4.3. Three-star model

Our final model for J2344 is of a triple system, consisting of a
very low-mass contact eclipsing binary orbiting a more massive
mid-K star which dominates the spectrum and obscures the con-
tribution from the binary. The light curve is then the sum of a
constant flux contribution from the K star (providing up to 9/11
of the maximum system flux), and a periodically-variable contri-
bution from the binary. The radial velocity curve is almost con-
stant, since it largely represents the unvarying (on this timescale)
position of the K dwarf. The 4.19 y cycle of period variation
would be a light-time effect (LITE) resulting from the orbit of

6
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Fig. 16. Best primary RV curve fit for PHOEBE K dwarf+brown dwarf
binary model.

Fig. 17. PHOEBE image of M+M dwarf binary model at phase 0.15.

Fig. 18. Best light curve fit for PHOEBE M+M dwarf binary model.

the contact binary around the most massive component of the
triple.

A third light can be readily included in PHOEBE’s models;
Figs. 17 to 19 show the results of modelling the eclipsing bi-
nary in such a triple system, using parametersi = 77◦, q = 0.5,
M1 = 0.34M⊙ and M2 = 0.17M⊙ (i.e. M dwarfs), and a max-
imal third light of 18.0 SuperWASP flux units (11.86V mag).
Fig. 17 indicates the very deep contact required; assuming this,
however, an excellent fit to the light curve is achieved, with-
out even needing spots to be included for fine-tuning (Fig. 18).

Fig. 19. RV curves corresponding to best light curve fit for PHOEBE
M+M dwarf binary model (primary curve shown with dashed line; sec-
ondary with dotted line.)

Fig. 19 shows the primary and secondary RV curves implied for
such an eclipsing binary, for reference only, since our observed
SALT velocities are expected to be dominated by the constant
K star, which is not included in the PHOEBE model as a mass,
only as a light source.

Using these masses, totalling∼ 0.5M⊙, for the binary, and
a plausible 0.65M⊙ for the K5 system primary, a binary-to-
primary flux ratio of about 1:5 is implied, consistent with the
modelled ratio of around 1:6 given by the SuperWASP light
curve with maximum third light. We can also insert these val-
ues into the approximate formula for expected LITE changes for
a binary in an edge-on circular orbit with a third body, givenby
Pribulla et al. (2012) in their Eq. 5:

∆T ≈
2M3G1/3

c

[

P3

2π(M1 + M2)

]2/3

, (1)

whereM1,2 are the masses of the binary components,M3 is the
mass of the K5 system primary,P3 is the 4.19 y period ofO −C
oscillations, and∆T is the peak-to-peak amplitude of theO − C
variations. The result is 2640 s, about twice the observed am-
plitude (Fig. 3), which is entirely plausible if we do not expect
the angle of inclination to be 90◦. (Indeed, using Pribulla et al.’s
Eq. 10 with these masses and our observed semi-amplitude of
LITE of 631 s,i = 56◦ is suggested.)

On the assumption that this model was approximately cor-
rect, a suitably-scaled constant K5 template spectrum was sub-
tracted from each of our spectra to see whether some trace of
an M+M eclipsing binary spectrum might be detectable in the
residuals. Fig. 20 shows the resulting RV curves, after cross-
correlation with a phase 0 residual spectrum. A second cross-
correlation peak was now marginally detectable in the spectra
near quadrature, yielding RVs in a similar range, and following
a similar upward trend, to those predicted for the primary curve
in Fig. 19 near phase 0.25. The other RVs reached greater am-
plitudes than before (Fig. 6) and might conceivably represent a
blending of lines from multiple stellar components. Given that
our best model for the low-mass eclipsing binary in this putative
triple system involves very deep contact, it is likely that their
lines would be significantly broadened and blended even if no
third spectrum were present to complicate the picture, making
extraction of RVs challenging in any case.

2MASS and WISE colours for the source were also checked
for evidence of an infrared excess which might support the pres-
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Fig. 20. Residual RV curves for J2344, following subtraction of scaled
K5V template spectrum, and cross-correlation with phase 0 residual
spectrum. The stronger cross-correlation peak velocities are shown with
diamonds; the fainter cross-correlation peak visible near quadrature is
plotted with squares.

ence of M dwarfs in the system. The results were inconclusive,
however: 2MASS J−H and H−K colours were in ranges ex-
pected for a K5 star, while the WISE colours were inconsistent,
possibly being contaminated by nearby sources.

Although we lack conclusive evidence for it, a triple system
seems the most likely of our three models for J2344. We have not
assessed the dynamical stability of such a triple, but note the re-
cent detection of a young hierarchical triple composed of a late-
K primary and a pair of mid-M dwarfs in wide orbits (Deacon
et al. 2013) which shows some similarity to the system posited
here. Using the observed and theoretical absolute magnitudes
for the stars in this model, a distance of 80–90 pc is indicated.
The calculated separation between system primary and contact
binary is 2.7 AU, which would then correspond to an angular
separation of∼ 0.′′03, making the components resolvable in prin-
ciple. The expected RV amplitude for the system primary, over a
4.19 y orbital period with the binary, would be around 8 km s-1

(assuming a circular orbit and the same angle of inclinationas
for the contact binary), which might also be detectable in the
long term.

5. Conclusions

Object J2344, which we originally thought might be an eclips-
ing binary close to stellar merger, has proved to be unusual and
intriguing in a different way. Of the three models investigated
here, a triple system containing a low-mass eclipsing binary ap-
pears the most plausible explanation for the apparently conflict-
ing photometric and spectroscopic data, and provides an appeal-
ing reason for the dramatic cyclic variations in period length
observed as well. If confirmed, it should provide a useful con-
tribution to studies of multiple systems, alongside the quadru-
ple doubly-eclipsing system already detected in our collection
of short-period SuperWASP eclipsing binary candidates (Lohr
et al. 2013).

Alternatively, if one of our other explanations proves more
likely, J2344 could add to our knowledge of brown dwarfs, or
constitute a rare type of rotational variable. Still other explana-
tions are no doubt conceivable e.g. involving higher multiplicity
of the system; in any case, this appears to be an interesting object
worthy of further observation. We would hope in the future to

obtain multi-colour photometry and near-infrared spectroscopy
of J2344, with improved phase coverage, in the expectation that
the greater contrast available at longer wavelengths wouldin-
crease the opportunity of detecting cool, low-mass objectswithin
the system.
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