25 research outputs found

    Clinical Presentation of a Complex Neurodevelopmental Disorder Caused by Mutations in ADNP

    Get PDF
    Background In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking. Methods We identified a worldwide cohort of 78 individuals with likely disruptive mutations in ADNP from January 2014 to October 2016 through systematic literature search, by contacting collaborators, and through direct interaction with parents. Clinicians filled in a structured questionnaire on genetic and clinical findings to enable correlations between genotype and phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to complement the written questionnaires. Results We report on the detailed clinical characterization of a large cohort of individuals with an ADNP mutation and demonstrate a distinctive combination of clinical features, including mild to severe intellectual disability, autism, severe speech and motor delay, and common facial characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* mutation were more severely affected. Conclusions This overview defines the full clinical spectrum of individuals with ADNP mutations, a specific autism subtype. We show that individuals with mutations in ADNP have many overlapping clinical features that are distinctive from those of other autism and/or intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation between genotype and phenotype.This work was supported by grants from the European Research Area Networks Network of European Funding for Neuroscience Research through the Research Foundation–Flanders and the Chief Scientist Office–Ministry of Health (to RFK, GV, IG). This research was supported, in part, by grants from the Simons Foundation Autism Research Initiative (Grant No. SFARI 303241 to EEE) and National Institutes of Health (Grant No. R01MH101221 to EEE). This work was also supported by the Italian Ministry of Health and ‘5 per mille’ funding (to CR). For many individuals, sequencing was provided by research initiatives like the Care4Rare Research Consortium in Canada or the Deciphering Developmental Disorders (DDD) study in the UK. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (Grant No. HICF-1009–003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (Grant No. WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of the Wellcome Trust or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South Research Ethics Committee, and GEN/284/12 granted by the Republic of Ireland Research Ethics Committee). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network

    Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype

    Get PDF
    Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10–12

    Large-scale dynamics of the Glanville fritillary butterfly : landscape structure, population processes, and weather

    Get PDF
    The Glanville fritillary (Melitaea cinxia) has been studied in Finland within an area of 50 by 70 km since 1993. We analyse 11-yr time series for aggregate populations in 20 squares of 4 by 4 km. Different aggregate populations exhibit dissimilar long-term trends, including significant increasing and decreasing trends as well as stable population sizes, and their average size is significantly related to the amount of habitat but not of host plants. Precipitation shows spatially correlated variation in the study area, recorded with high-resolution weather radar. Spatial variation in August and June precipitation explains a significant amount of spatial variation in the dynamics of aggregate populations. Many processes operating in local populations have strong effects, but these effects are not consistent in time and space and they often counter each other, making it less likely that one would detect a signal of local processes in large-scale data for aggregate populations

    Extending the benefits of attending a conference abroad

    No full text

    The Nordic saproxylic database - a comprehensive overview of the biological diversity in dead wood

    No full text

    Community-level phenological response to climate change

    Get PDF
    Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systemat- ically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19insect, and9fungal phenological events, as well as for 77climatic events related to temperature, precipitation, snow,ice, and frost. Weshow that species are shifting their phenologies at dissimilar rates, partly because they respond to different climatic factors, which in turn are shifting at dissimilar rates. Plants have advanced their spring phenology even faster than average tem- perature has increased, whereas migratory birds have shown more divergent responses and shifted, on average, less than plants. Phenological events of birds and insects were mainly trig- geredby climate cues (variation in temperature and snowand ice cover) occurring over the course of short periods, whereas many plants, herptiles, and fungi were affected by long-term climatic averages. Year-to-year variation in plants, herptiles, and insects showed a high degree of synchrony, whereas the phenological timing of fungi did not correlate with anyother taxonomicgroup. In many cases, species that are synchronous in their year-to-year dynamics havealso shifted in congruence, suggesting that climate change mayhave disrupted phenological synchrony less than has beenpreviously assumed.Ourresults illustrate howamultidimen-sional change in the physical environment has translated into a community-level change in phenology.Peer reviewe

    The seasonal sensitivity of brown bear denning phenology in response to climatic variability

    Get PDF
    BackgroundFor brown bears (Ursus arctos), hibernation is a critical part of the annual life cycle because energy savings during hibernation can be crucial for overwintering, and females give birth to cubs at that time. For hibernation to be a useful strategy, timing is critical. However, environmental conditions vary greatly, which might have a negative effect on the functionality of the evolved biological time-keeping. Here, we used a long-term dataset (69years) on brown bear denning phenology recorded in 12 Russian protected areas and quantified the phenological responses to variation in temperature and snow depth. Previous studies analyzing the relationship between climate and denning behavior did not consider that the brown bear response to variation in climatic factors might vary through a period preceding den entry and exit. We hypothesized that there is a seasonal sensitivity pattern of bear denning phenology in response to variation in climatic conditions, such that the effect of climatic variability will be pronounced only when it occurs close to den exit and entry dates.ResultsWe found that brown bears are most sensitive to climatic variations around the observed first den exit and last entry dates, such that an increase/decrease in temperature in the periods closer to the first den exit and last entry dates have a greater influence on the denning dates than in other periods.ConclusionsOur study shows that climatic factors are modulating brown bear hibernation phenology and provide a further structuring of this modulation. The sensitivity of brown bears to changes in climatic factors during hibernation might affect their ability to cope with global climate change. Therefore, understanding these processes will be essential for informed management of biodiversity in a changing world.Peer reviewe

    Spectrum of Clinical Features in X-Linked Myotubular Myopathy Carriers:An International Questionnaire Study

    No full text
    OBJECTIVE: To characterize the spectrum of clinical features in a cohort of X-linked myotubular myopathy (XL-MTM) carriers, including prevalence, genetic features, clinical symptoms, and signs, as well as associated disease burden. METHODS: We performed a cross-sectional online questionnaire study among XL-MTM carriers. Participants were recruited from patient associations, medical centers, and registries in the United Kingdom, Germany, and the Netherlands. We used a custom-made questionnaire, the Checklist Individual Strength (CIS), the Frenchay Activities Index (FAI), the Short Form 12 (SF-12) health survey, and the McGill Pain Questionnaire. Carriers were classified as manifesting or nonmanifesting on the basis of self-reported ambulation and muscle weakness. RESULTS: The prevalence of manifesting carriers in this study population (n = 76) was 51%, subdivided into mild (independent ambulation, 39%), moderate (assisted ambulation, 9%), and severe (wheelchair dependent, 3%) phenotypes. In addition to muscle weakness, manifesting carriers frequently reported fatigue (70%) and exercise intolerance (49%). Manifesting carriers scored higher on the overall CIS (p = 0.001), the fatigue subscale (p < 0.001), and least severe pain subscale (p = 0.005) than nonmanifesting carriers. They scored lower on the FAI (p = 0.005) and the physical component of the SF-12 health survey (p < 0.001). CONCLUSIONS: The prevalence of manifesting XL-MTM carriers may be higher than currently assumed, most having a mild phenotype and a wide variety of symptoms. Manifesting carriers are particularly affected by fatigue, limitations of daily activities, pain, and reduced quality of life. Our findings should increase awareness and provide useful information for health care providers and future clinical trials
    corecore