2,448 research outputs found

    The roles of motivation and ability in controlling the consequences of stereotype suppression

    Get PDF
    Two experiments investigated the conditions under which previously suppressed stereotypes are applied in impression formation. In Experiment 1, the extent to which a previously suppressed racial stereotype influenced subsequent impressions depended on the race of the target who was subsequently encountered. Whereas impressions of race-unspecified targets were assimilated to the stereotype following its suppression, no such effects were observed when the target belonged to the racial group whose stereotype had been initially suppressed. These results demonstrate that when perceivers are motivated to avoid stereo-typing individuals, the influence of a stereotype that has been previously activated through suppression is minimized. Experiment 2 demonstrated that these processing goals effectively reduce the impact of suppression-activated stereotypes only when perceivers have sufficient capacity to enact the goals. These results suggest that both sufficient motivation and capacity are necessary to prevent heightened stereotyping following stereotype suppression

    Evolution of a Polydisperse Ensemble of Spherical Particles in a Metastable Medium with Allowance for Heat and Mass Exchange with the Environment

    Get PDF
    Motivated by a wide range of applications in various fields of physics and materials science, we consider a generalized approach to the evolution of a polydisperse ensemble of spherical particles in metastable media. An integrodifferential system of governing equations, consisting of a kinetic equation for the particle-size distribution function (Fokker–Planck type equation) and a balance equation for the temperature (concentration) of a metastable medium, is formulated. The kinetic equation takes into account fluctuations in the growth/reduction rates of individual particles, the velocity of particles in a spatial direction, the withdrawal of particles of a given size from the metastable medium, and their source/sink term. The heat (mass) balance equation takes into account the growth/reduction of particles in a metastable system as well as heat (mass) exchange with the environment. A generalized system of equations describes various physical and chemical processes of phase transformations, such as the growth and dissolution of crystals, the evaporation of droplets, the boiling of liquids and the combustion of a polydisperse fuel. The ways of analytical solution of the formulated integrodifferential system of equations based on the saddle-point technique and the separation of variables method are considered. The theory can be applied when describing the evolution of an ensemble of particles at the initial and intermediate stages of phase transformation when the distances between the particles are large enough, and interactions between them can be neglected. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Russian Foundation for Basic Research, РФФИ: 20-08-00199; Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0057Funding: This paper comprises two parts of research studies, including (i) the model generalization and discussion of governing equations, analytical solutions, analysis of the results obtained, and (ii) checking the mathematics, numerical calculations, visualization, and discussion of the functions obtained. Two parts of this review article were supported by two financial sources. The first part was supported by the Russian Foundation for Basic Research (grant no. 20-08-00199). At the same time, the authors are grateful to the Ministry of Science and Higher Education of the Russian Federation (grant no. FEUZ-2020-0057) for the support of the second part of the research studies

    Quantum Hall transitions: An exact theory based on conformal restriction

    Full text link
    We revisit the problem of the plateau transition in the integer quantum Hall effect. Here we develop an analytical approach for this transition, based on the theory of conformal restriction. This is a mathematical theory that was recently developed within the context of the Schramm-Loewner evolution which describes the stochastic geometry of fractal curves and other stochastic geometrical fractal objects in 2D space. Observables elucidating the connection with the plateau transition include the so-called point-contact conductances (PCCs) between points on the boundary of the sample, described within the language of the Chalker-Coddington network model. We show that the disorder-averaged PCCs are characterized by classical probabilities for certain geometric objects in the plane (pictures), occurring with positive statistical weights, that satisfy the crucial restriction property with respect to changes in the shape of the sample with absorbing boundaries. Upon combining this restriction property with the expected conformal invariance at the transition point, we employ the mathematical theory of conformal restriction measures to relate the disorder-averaged PCCs to correlation functions of primary operators in a conformal field theory (of central charge c=0c=0). We show how this can be used to calculate these functions in a number of geometries with various boundary conditions. Since our results employ only the conformal restriction property, they are equally applicable to a number of other critical disordered electronic systems in 2D. For most of these systems, we also predict exact values of critical exponents related to the spatial behavior of various disorder-averaged PCCs.Comment: Published versio

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Role of retardation in 3-D relativistic equations

    Get PDF
    Equal-time Green's function is used to derive a three-dimensional integral equation from the Bethe-Salpeter equation. The resultant equation, in the absence of anti-particles, is identical to the use of time-ordered diagrams, and has been used within the framework of ϕ2σ\phi^2\sigma coupling to study the role of energy dependence and non-locality when the two-body potential is the sum of σ\sigma-exchange and crossed σ\sigma exchange. The results show that non-locality and energy dependence make a substantial contribution to both the on-shell and off-shell amplitudes.Comment: 17 pages, RevTeX; 8 figures. Accepted for publication in Phys. Rev. C56 (Nov. 97

    Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)

    Full text link
    We present measurements of position and angular resolution of drift chambers operated with a Xe,CO2_2(15%) mixture. The results are compared to Monte Carlo simulations and important systematic effects, in particular the dispersive nature of the absorption of transition radiation and non-linearities, are discussed. The measurements were carried out with prototype drift chambers of the ALICE Transition Radiation Detector, but our findings can be generalized to other drift chambers with similar geometry, where the electron drift is perpendicular to the wire planes.Comment: 30 pages, 18 figure

    The HADES Tracking System

    Full text link
    The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in total about 30 square meter of active area. Low multiple scattering in the in total four planes of drift chambers before and after the magnetic field is ensured by using helium-based gas mixtures and aluminum cathode and field wires. First in-beam performance results are contrasted with expectations from simulations. Emphasis is placed on the energy loss information, exploring its relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on Instrumentation, Vienna, February 2004, to be published in NIM A (special issue

    MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Full text link
    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.Comment: 11 page
    corecore