1,252 research outputs found

    Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS

    Get PDF
    We present Hubble Space Telescope near-infrared transit photometry of the nearby hot-Jupiter HD189733b. The observations were taken with the NICMOS instrument during five transits, with three transits executed with a narrowband filter at 1.87 microns and two performed with a narrowband filter at 1.66 microns. Our observing strategy using narrowband filters is insensitive to the usual HST intra-orbit and orbit-to-orbit measurement of systematic errors, allowing us to accurately and robustly measure the near-IR wavelength dependance of the planetary radius. Our measurements fail to reproduce the Swain et al. absorption signature of atmospheric water below 2 microns at a 5-sigma confidence level. We measure a planet-to-star radius contrast of 0.15498+/-0.00035 at 1.66 microns and a contrast of 0.15517+/-0.00019 at 1.87 microns. Both of our near-IR planetary radii values are in excellent agreement with the levels expected from Rayleigh scattering by sub-micron haze particles, observed at optical wavelengths, indicating that upper-atmospheric haze still dominates the near-IR transmission spectra over the absorption from gaseous molecular species at least below 2 microns.Comment: 9 pages, 7 figures. Accepted for publication in A&

    Chiral Compactification on a Square

    Full text link
    We study quantum field theory in six dimensions with two of them compactified on a square. A simple boundary condition is the identification of two pairs of adjacent sides of the square such that the values of a field at two identified points differ by an arbitrary phase. This allows a chiral fermion content for the four-dimensional theory obtained after integrating over the square. We find that nontrivial solutions for the field equations exist only when the phase is a multiple of \pi/2, so that this compactification turns out to be equivalent to a T^2/Z_4 orbifold associated with toroidal boundary conditions that are either periodic or anti-periodic. The equality of the Lagrangian densities at the identified points in conjunction with six-dimensional Lorentz invariance leads to an exact Z_8\times Z_2 symmetry, where the Z_2 parity ensures the stability of the lightest Kaluza-Klein particle.Comment: 28 pages, latex. References added. Clarifying remarks included in section 2. Minor corrections made in section

    Transiting extrasolar planetary candidates in the Galactic bulge

    Get PDF
    More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to the reflex motions of their host stars, and more recently through transits of some planets across the face of the host stars. The detection of planets with the shortest known periods, 1.2 to 2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M_sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of 0.44 to 0.75 M_sun. In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets (USPPs), which occur only around stars of less than 0.88 M_sun. This indicates that those orbiting very close to more luminous stars might be evaporatively destroyed, or that jovian planets around lower-mass stars might migrate to smaller radii.Comment: To appear in October 5, 2006 issue of Natur

    The spin-orbit alignment of the transiting exoplanet WASP-3b from Rossiter-McLaughlin observations

    Get PDF
    We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (lambda) is small and consistent with zero within 2 sigma; lambda = 15 +10/-9 deg. WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically-gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6 +2.2/-2.1 km/s) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5 km/s). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. (2009) designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7 +1.4/-1.3 km/s).Comment: 7 pages, 3 figures, published in MNRAS 405 (2010) 1867-1872. Update includes discussion on differential rotaation and correction of typo

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Gran Telescopio Canarias OSIRIS Transiting Exoplanet Atmospheric Survey: Detection of potassium in XO-2b from narrowband spectrophotometry

    Get PDF
    We present Gran Telescopio Canarias (GTC) optical transit narrow-band photometry of the hot-Jupiter exoplanet XO-2b using the OSIRIS instrument. This unique instrument has the capabilities to deliver high cadence narrow-band photometric lightcurves, allowing us to probe the atmospheric composition of hot Jupiters from the ground. The observations were taken during three transit events which cover four wavelengths at spectral resolutions near 500, necessary for observing atmospheric features, and have near-photon limited sub-mmag precisions. Precision narrow-band photometry on a large aperture telescope allows for atmospheric transmission spectral features to be observed for exoplanets around much fainter stars than those of the well studied targets HD209458b and HD189733b, providing access to the majority of known transiting planets. For XO-2b, we measure planet-to-star radius contrasts of R_pl/R_star=0.10508+/-0.00052 at 6792 Ang, 0.10640+/-0.00058 at 7582 Ang, and 0.10686+/-0.00060 at 7664.9 Ang, and 0.10362+/-0.00051 at 8839 Ang. These measurements reveal significant spectral features at two wavelengths, with an absorption level of 0.067+/-0.016% at 7664.9 Ang due to atmospheric potassium in the line core (a 4.1-sigma significance level), and an absorption level of 0.058+/-0.016% at 7582 Ang, (a 3.6-sigma significance level). When comparing our measurements to hot-Jupiter atmospheric models, we find good agreement with models which are dominated in the optical by alkali metals. This is the first evidence for potassium in an extrasolar planet, an element that has long been theorized along with sodium to be a dominant source of opacity at optical wavelengths for hot Jupiters.Comment: 11 pages, 6 figures, accepted in A&A, minor changes to wording, primarily section 4.2, and the title has also been slightly modifie

    Granular Avalanches in Fluids

    Full text link
    Three regimes of granular avalanches in fluids are put in light depending on the Stokes number St which prescribes the relative importance of grain inertia and fluid viscous effects, and on the grain/fluid density ratio r. In gas (r >> 1 and St > 1, e.g., the dry case), the amplitude and time duration of avalanches do not depend on any fluid effect. In liquids (r ~ 1), for decreasing St, the amplitude decreases and the time duration increases, exploring an inertial regime and a viscous regime. These regimes are described by the analysis of the elementary motion of one grain

    HST hot-Jupiter transmission spectral survey: Haze in the atmosphere of WASP-6b

    Get PDF
    We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzer's InfraRed Array Camera (IRAC). The resulting spectrum covers the range 0.294.5μ0.29-4.5\,\mum. We find evidence for modest stellar activity of WASP-6b and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of Δ(Rp/R)=0.0071\Delta (R_p/R_{\ast})=0.0071 from 0.33 to 4.5μ4.5\,\mum. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of 973±144973\pm144 K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we find that the complete spectrum can be described by models that include significant opacity from aerosols including Fe-poor Mg2_2SiO4_4, MgSiO3_3, KCl and Na2_2S dust condensates. WASP-6b is the second planet after HD189733b which has equilibrium temperatures near 1200\sim1200 K and shows prominent atmospheric scattering in the optical.Comment: 18 pages, 15 figures, 7 table

    The White Dwarf Distance to the Globular Cluster 47 Tucanae and its Age

    Get PDF
    We present a new determination of the distance (and age) of the Galactic globular cluster 47 Tucanae (NGC 104) based on the fit of its white dwarf (WD) cooling sequence with the empirical fiducial sequence of local WD with known trigonometric parallax, following the method described in Renzini et al. (1996). Both the cluster and the local WDs were imaged with HST+WFPC2 using the same instrument setup. We obtained an apparent distance modulus of (mM)V=13.27±0.14(m-M)_V=13.27\pm0.14 consistent with previous ground-based determinations and shorter than that found using HIPPARCOS subdwarfs. Coupling our distance determination with a new measure of the apparent magnitude of the main sequence turnoff, based on our HST data, we derive an age of 13±2.513\pm2.5 Gyr.Comment: Accepted for publication on the Astrophysical Journa
    corecore