142 research outputs found

    Serum response factor cleavage by caspases 3 and 7 linked to apoptosis in human BJAB cells

    Get PDF
    Apoptosis involves the cessation of cellular processes, the breakdown of intracellular organelles, and, finally, the nonphlogistic clearance of apoptotic cells from the body. Important for these events is a family of proteases, caspases, which are activated by a proteolytic cleavage cascade and drive apoptosis by targeting key proteins within the cell. Here, we demonstrate that serum response factor (SRF), a transcription factor essential for proliferative gene expression, is cleaved by caspases and that this cleavage occurs in proliferating murine fibroblasts and can be induced in the human B-cell line BJAB. We identify the two major sites at which SRF cleavage occurs as Asp245 and Asp254, the caspases responsible for the cleavage and generate a mutant of SRF resistant to cleavage in BJAB cells. Investigation of the physiological and functional significance of SRF cleavage reveals that it correlates with the loss of e-fos expression, whereby neither SRF cleavage fragment retains transcriptional activity. Moreover, the expression of a noncleavable SRF in BJAB cells suppresses apoptosis induced by Fas cross-linking. These results suggest that for apoptosis to proceed, the transcriptional events promoting cell survival and proliferation, in which SRF is involved, must first be inactivated

    Investigating the effect of synthesis selection on O3-sodium layered oxide structural changes and electrochemical properties

    Get PDF
    Transition metal (TM) layered oxides constitute a promising family of materials for use in Na-ion battery cathodes. Here O3-Na (Ni1/3Mn1/3Fe1/3) O2 was synthesised using optimised sol-gel and solid-state routes, and the physico- and electrochemical natures of the resulting materials were thoroughly studied. Significant differences in electrochemical behaviour were observed, and the use of in operando XRD determined this stemmed from the suppression of the P3 phase in the sol-gel material during cycling. This was attributable to differences in the degree of transition metal migration in the materials ensuing from the selection of synthetic route. This demonstrates that not only the choice of material, but also that of synthesis route, can have dramatic impact on the resulting structural and electrochemical nature, making such considerations critical in the future development of advanced Na-ion cathode materials

    Dog Burials Associated with Human Burials in the West Indies during the Early Pre-Columbian Ceramic Age (500 BC-600 AD)

    Get PDF
    Across the Caribbean, the widespread presence of canine remains at archaeological sites from the Saladoid period raises questions about the role of “man’s best friend.” Dog (Canis familiaris) remains have been found located in both refuse middens and burials adjacent to human graves in a number of sites in the French Antilles and Barbuda, West Indies. This paper will critically examine dog remains and discuss the varied duality of the dog’s role in the Saladoid world: from food source to lifelong companion. The importance of dogs within Amerindian sites from Saint Martin, the Guadeloupe archipelago, Martinique and Barbuda will be explored from a zooarchaeological perspective, concluding with a critical discussion of changes in cultural patterns, as seen through the decline in dog remains during the Troumassoid and Suazoid period at the sites in the French Antilles. Résumé Sépultures de chiens associées à des sépultures humaines dans les Petites Antilles à l’Âge du Néoindien ancien (500 av. – 600 ap. J.-C.). Dans les Antilles, la présence généralisée de restes de chiens sur les sites de la période céramique ancienne Saladoïde soulève des questions sur le rôle de ce « meilleur ami de l’homme ». En effet, des chiens (Canis familiaris) ont été trouvés aussi bien dans des zones de rejets, qu’enterrés aux côtés de sépultures humaines dans un certain nombre de sites des Petites Antilles. Ce document examinera ces restes de chiens de façon critique et décrira les morphologies particulières des chiens des sites amérindiens de l’île de Saint-Martin, l\u27archipel de la Guadeloupe, la Martinique et de l’île de Barbuda, dans une perspective archéozoologique. Une discussion critique portera sur l\u27évolution des changements des modèles culturels, comme celui de la chute drastique des chiens enterrés pendant les périodes archéologiques plus tardives, Troumassoïde et Suazoïde, des sites des Antilles françaises. Enfin, la discussion portera sur la dualité du rôle du chien dans le monde Saladoïde, à la fois source de nourriture et compagnon de vie

    Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1

    Get PDF
    The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin–proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs

    Stabilization of O-O Bonds by d(0) Cations in Li4+xNi1-xWO6 (0 <= x <= 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis

    Get PDF
    Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rock salt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1–xWO6 (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O–O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion–anion bonding with the anion redox capacity

    Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1

    Get PDF
    Many eukaryotic genes are acutely regulated by extra-cellular signals. The c-fos serum response element (SRE) mediates transcriptional activation in response to mitogens through serum response factor (SRF)-dependent recruitment of Elk-1, a mitogen-activated protein kinase (MAPK)-responsive transcription factor. How subsequent events at SRE promoters stimulate initiation of transcription has yet to be fully resolved. Here we show that extra-cellular signal-regulated kinase (ERK) and mitogen and stress-activated kinase (MSK) are recruited to SRE promoter complexes in vitro and in vivo. Their recruitment in vitro correlates with Elk-1 binding and for ERK the D domain/KIM of Elk-1 is specifically involved. In vivo, recruitment of ERK and MSK is stimulated by mitogens, correlates with histone H3 phosphorylation and is impaired by Elk-1 knockdown. Immunocytochemistry and confocal microscopy reveal that ERK appears to associate to some extent with initiating rather than elongating RNA polymerase II. Taken together, our data add to the body of evidence implying that ERK and related MAPKs may fulfil a generic role at the promoters of acutely regulated genes

    Molecular dynamics simulations and in silico peptide ligand screening of the Elk-1 ETS domain

    Get PDF
    Background: The Elk-1 transcription factor is a member of a group of proteins called ternary complex factors, which serve as a paradigm for gene regulation in response to extracellular signals. Its deregulation has been linked to multiple human diseases including the development of tumours. The work herein aims to inform the design of potential peptidomimetic compounds that can inhibit the formation of the Elk-1 dimer, which is key to Elk-1 stability. We have conducted molecular dynamics simulations of the Elk-1 ETS domain followed by virtual screening. Results: We show the ETS dimerisation site undergoes conformational reorganisation at the a1b1 loop. Through exhaustive screening of di- and tri-peptide libraries against a collection of ETS domain conformations representing the dynamics of the loop, we identified a series of potential binders for the Elk-1 dimer interface. The di-peptides showed no particular preference toward the binding site; however, the tri-peptides made specific interactions with residues: Glu17, Gln18 and Arg49 that are pivotal to the dimer interface. Conclusions: We have shown molecular dynamics simulations can be combined with virtual peptide screening to obtain an exhaustive docking protocol that incorporates dynamic fluctuations in a receptor. Based on our findings, we suggest experimental binding studies to be performed on the 12 SILE ranked tri-peptides as possible compounds for the design of inhibitors of Elk-1 dimerisation. It would also be reasonable to consider the score ranked tri-peptides as a comparative test to establish whether peptide size is a determinant factor of binding to the ETS domain
    corecore