2,578 research outputs found

    Dust photophoretic transport around a T Tauri star: Implications for comets composition

    Get PDF
    There is a growing body of evidences for the presence of crystalline material in comets. These crystals are believed to have been annealed in the inner part of the proto-solar nebula, while comets should have been formed in the outer regions. Several transport processes have been proposed to reconcile these two facts; among them a migration driven by photophoresis. The primarily goal of this work is to assess whether disk irradiation by a Pre-Main Sequence star would influence the photophoretic transport. To do so, we have implemented an evolving 1+1D model of an accretion disk, including advanced numerical techniques, undergoing a time-dependent irradiation, consistent with the evolution of the proto-Sun along the Pre-Main Sequence. The photophoresis is described using a formalism introduced in several previous works. Adopting the opacity prescription used in these former studies, we find that the disk irradiation enhances the photophoretic transport: the assumption of a disk central hole of several astronomical units in radius is no longer strictly required, whereas the need for an ad hoc introduction of photoevaporation is reduced. However, we show that a residual trail of small particles could annihilate the photophoretic driven transport via their effect on the opacity. We have also confirmed that the thermal conductivity of transported aggregates is a crucial parameter which could limit or even suppress the photophoretic migration and generate several segregation effects

    Influence of the Earth on the background and the sensitivity of the GRM and ECLAIRs instruments aboard the Chinese-French mission SVOM

    Full text link
    SVOM (Space-based multi-band astronomical Variable Object Monitor) is a future Chinese-French satellite mission which is dedicated to Gamma-Ray Burst (GRB) studies. Its anti-solar pointing strategy makes the Earth cross the field of view of its payload every orbit. In this paper, we present the variations of the gamma-ray background of the two high energy instruments aboard SVOM, the Gamma-Ray Monitor (GRM) and ECLAIRs, as a function of the Earth position. We conclude with an estimate of the Earth influence on their sensitivity and their GRB detection capability.Comment: 24 pages, 15 figures, accepted for publication in Experimental Astronom

    A primordial origin for the atmospheric methane of Saturn's moon Titan

    Full text link
    The origin of Titan's atmospheric methane is a key issue for understanding the origin of the Saturnian satellite system. It has been proposed that serpentinization reactions in Titan's interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan's planetesimals before its formation. Here, we point out that serpentinization reactions in Titan's interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan's water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan's interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite's planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan's interior can be up to 1,300 times the current mass of atmospheric methane.Comment: Accepted for publication in Icaru

    The role of the genetic counsellor: a systematic review of research evidence

    Get PDF
    In Europe, genetic counsellors are employed in specialist genetic centres or other specialist units. According to the European Board of Medical Genetics, the genetic counsellor must fulfil a range of roles, including provision of information and facilitation of psychosocial adjustment of the client to their genetic status and situation. To evaluate the extent to which genetic counsellors fulfil their prescribed roles, we conducted a systematic review of the published relevant scientific evidence. We searched five relevant electronic databases (Medline, CINAHL, SocIndex, AMED and PsychInfo) using relevant search terms and handsearched four subject-specific journals for research-based papers published in English between 1 January 2000 and 30 June 2013. Of 419 potential papers identified initially, seven satisfied the inclusion criteria for the review. Themes derived from the thematic analysis of the data were: (i) rationale for genetic counsellors to provide care, (ii) appropriate roles and responsibilities and (iii) the types of conditions included in the genetic counsellor caseload. The findings of this systematic review indicate that where genetic counsellors are utilised in specialist genetic settings, they undertake a significant workload associated with direct patient care and this appears to be acceptable to patients. With the burden on genetic services, there is an argument for the increased use of genetic counsellors in countries where they are under-utilised. In addition, roles undertaken by genetic counsellors in specialist genetic settings could be adapted to integrate genetic counsellors into multi-disciplinary teams in other specialisms

    Voltage controlled terahertz transmission through GaN quantum wells

    Full text link
    We report measurements of radiation transmission in the 0.220--0.325 THz frequency domain through GaN quantum wells grown on sapphire substrates at room and low temperatures. A significant enhancement of the transmitted beam intensity with the applied voltage on the devices under test is found. For a deeper understanding of the physical phenomena involved, these results are compared with a phenomenological theory of light transmission under electric bias relating the transmission enhancement to changes in the differential mobility of the two-dimensional electron gas

    Further studies of 1E 1740.7-2942 with ASCA

    Get PDF
    We report the ASCA results of the Great Annihilator 1E 1740.7-2942 obtained with five pointing observations in a time span of 3.5 years. The X-ray spectrum for each period is well fitted with a single power-law absorbed by a high column of gas. The X-ray flux changes by a factor of 2 from period to period, but the other spectral parameters show no significant change. The photon index is flat with \Gamma = 0.9--1.3. The column densities of hydrogen N_H is \sim 1.0 x 10^{23} H cm^{-2} and that of iron N_{Fe} is \sim 10^{19} Fe cm^{-2}. These large column densities indicate that 1E 1740.7-2942 is near at the Galactic Center. The column density ratio leads the iron abundance to be 2 times larger than the other elements in a unit of the solar ratio. The equivalent width of the K\alpha-line from a neutral iron is less than 15 eV in 90% confidence. This indicates that the iron column density within several parsecs from 1E 1740.7-2942 is less than 5 x 10^{17} Fe cm^{-2}. In addition, the derived hydrogen column density is about 1/6 of that of giant molecular clouds in the line of sight. All these facts support that 1E 1740.7-2942 is not in a molecular cloud, but possibly in front of it; the X-rays are not powered by accretion from a molecular cloud, but from a companion star like ordinary X-ray binaries.Comment: To appear in ApJ July 20, 1999 issue, Vol. 520 #1, 23 pages LaTeX files, uses aasms4.sty and psfig.sty, also available at http://www-cr.scphys.kyoto-u.ac.jp/member/sakano/work/paper/index-e.htm

    Anisotropic Dirac electronic structures of AMnBi2 (A = Sr, Ca)

    Get PDF
    Low-energy electronic structures in AMnBi(2) (A=alkaline earths) are investigated using a first-principles calculation and a tight binding method. An anisotropic Dirac dispersion is induced by the checkerboard arrangement of A atoms above and below the Bi square net in AMnBi(2 center dot) SrMnBi2 and CaMnBi2 have a different kind of Dirac dispersion due to the different stacking of nearby A layers, where each Sr (Ca) of one side appears at the coincident (staggered) xy position of the same element at the other side. Using the tight binding analysis, we reveal the chirality of the anisotropic Dirac electrons as well as the sizable spin-orbit coupling effect in the Bi square net. We suggest that the Bi square net provides a platform for the interplay between anisotropic Dirac electrons and the neighboring environment such as magnetism and structural changes.open6
    corecore