623 research outputs found

    Combined Structure and Texture Image Inpainting Algorithm for Natural Scene Image Completion

    Get PDF
    Image inpainting or image completion refers to the task of filling in the missing or damaged regions of an image in a visually plausible way. Many works on this subject have been proposed these recent years. We present a hybrid method for completion of images of natural scenery, where the removal of a foreground object creates a hole in the image. The basic idea is to decompose the original image into a structure and a texture image. Reconstruction of each image is performed separately. The missing information in the structure component is reconstructed using a structure inpainting algorithm, while the texture component is repaired by an improved exemplar based texture synthesis technique. Taking advantage of both the structure inpainting methods and texture synthesis techniques, we designed an effective image reconstruction method. A comparison with some existing methods on different natural images shows the merits of our proposed approach in providing high quality inpainted images. Keywords: Image inpainting, Decomposition method, Structure inpainting, Exemplar based, Texture synthesi

    Document Image Binarization Using Post Processing Method

    Get PDF
    Binarization is the preliminary process of Document Image Analysis and Processing. Image binarization is performed through Local and Global threshold methods. In this paper local thresholding method Nilblack method with post processing was implemented. The Nilblack algorithm was implemented using Matlab and tested with a sample of ground tooth images selected from TOBACCO research database

    Design of Multiple Ontology Based Agro Knowledge Mining Model

    Get PDF
    Farming is regarded as a major industry in India, accounting for 17% of the country's GDP growth. Agriculture employs 60% of the population hence it is considered an important sector in India. The important factors for agriculture are pest management, disease prevention, irrigation management, soil mineral composition, crop management, location, and the season in which the crop is grown. Hence all this information along with the techniques are well known only by the experienced farmers. Hence it is important to create an agro knowledge management system. As a result, this work makes an attempt to develop a multiple ontology-based agro knowledge management system. The designed system consists of agriculture information related to attributes of soil mineral, moisture, season, location, crop type, and temperature. It consists of multiple ontologies such as soil ontology, crop ontology, location ontology, and crop season ontology to provide agronomy knowledge. Soil ontology is premeditated to classify the soil type in a hierarchical order while crop ontology classifies the crop type, location ontology classifies locations suitable for different crop types and finally, crop season ontology classifies the season that is suitable for different crops. A rule base is built to develop the knowledge base and to validate the truthfulness of the knowledge base. Visualization of a knowledge base is carried out for better understanding and decision-making

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles

    Get PDF
    This paper focuses on the research of motile microorganism rates in the bioconvective Oldroyd-B nanoliquid flow over a vertical stretching sheet with mixed convection and inclined magnetic field. Additionally, interesting characteristics of thermophoresis, Brownian motion, viscous dissipation, Joule heating, and stratification are examined. Similarity transformations are employed to reduce the mathematical model to higher-order ODE. The convergent serious solution is applied to solve the nonlinear differential system. The analysis of temperature, velocity, motile microorganisms’ density, and nanoparticle concentration are represented through graphs. Local Nusselt number, density number of motile microorganisms, and Sherwood number are examined via contour plots

    Magneto Transport of high TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Ag Polycrystalline Composites

    Full text link
    We report the synthesis, (micro)structural, magneto-transport and magnetization of polycrystalline La2/3Ca1/3MnO3:Agx composites with x = 0.0, 0.1, 0.2, 0.3 and 0.4. The temperature coefficient of resistance (TCR) near ferromagnetic (FM) transition is increased significantly with addition of Ag. The FM transition temperature (TFM) is also increased slightly with Ag addition. Magneto-transport measurements revealed that magneto-resistance MR is found to be maximum near TFM. Further the increased MR of up to 60% is seen above 300 K for higher silver added samples in an applied field of 7 Tesla. Sharp TCR is seen near TFM with highest value of up to 15 % for Ag (0.4) sample, which is an order of magnitude higher than as for present pristine sample and best value yet reported for any polycrystalline LCMO compound. Increased TCR, TFM and significant above room temperature MR of La2/3Ca1/3MnO3:Agx composites is explained on the basis of improved grains size and connectivity with silver addition in the matrix. Better coupled FM domains and nearly conducting grain boundaries give rise to improved physical properties of the La2/3Ca1/3MnO3 manganites.Comment: 16 pages Text + Figs. ACCEPTED: Solid State Communications (Sept. 2006

    Magnetism of cluster-deposited Y–Co nanoparticles

    Get PDF
    Nanoparticles of YCo2, YCo3, and YCo5 are produced by cluster-deposition and investigated both structurally and magnetically. The nanoparticles have sizes of less than 10 nm and are superparamagnetic at 300 K, irrespective of stoichiometry. As-produced nanoparticles exhibit disordered structures with magnetic properties differing from those of the bulk particles. The temperature-dependent magnetization curves of the nanoparticles reveal blocking temperatures from 110 to 250 K, depending on stoichiometry. The magnetic anisotropy constant K1 of disordered YCo5 nanoparticles of 7.8 nm in size is 3.5×106ergs/cm3, higher than those of the disordered YCo2 (8.9×105ergs/cm3) and YCo3 (1.0×106ergs/cm3) nanoparticles

    Tunable variation of optical properties of polymer capped gold nanoparticles

    Full text link
    Optical properties of polymer capped gold nanoparticles of various sizes (diameter 3-6 nm) have been studied. We present a new scheme to extract size dependent variation of total dielectric function of gold nanoparticles from measured UV-Vis absorption data. The new scheme can also be used, in principle, for other related systems as well. We show how quantum effect, surface atomic co - ordination and polymer - nanoparticle interface morphology leads to a systematic variation in inter band part of the dielectric function of gold nanoparticles, obtained from the analysis using our new scheme. Careful analysis enables identification of the possible changes to the electronic band structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl

    Pancreas and islet cell transplantation

    Get PDF
    Currently, for the patient with type 1 diabetes, a definitive treatment without resorting to the use of exogenous insulin can be achieved only with pancreas or islet cell transplantation. These means of restoring β-cell mass can completely maintain essentially normal long-term glucose homeostasis, although the need for powerful immunosuppressive regimens limits their application to only a subgroup of adult patients. Apart from the shortage of donors that has limited all kinds of transplantation, however, the widespread use of β-cell replacement has been precluded until recently by the drawbacks associated with both organ and islet cell transplantation. Although the study of recurrence of diabetes has generated attention, the fundamental obstacle to pancreas and islet transplantation has been, and remains, the alloimmune response. With a better elucidation of the mechanisms of alloengraftment achieved during the last 3 years, the stage has been set for further advances
    corecore