345 research outputs found

    Capillary pressure of van der Waals liquid nanodrops

    Full text link
    The dependence of the surface tension on a nanodrop radius is important for the new-phase formation process. It is demonstrated that the famous Tolman formula is not unique and the size-dependence of the surface tension can distinct for different systems. The analysis is based on a relationship between the surface tension and disjoining pressure in nanodrops. It is shown that the van der Waals interactions do not affect the new-phase formation thermodynamics since the effect of the disjoining pressure and size-dependent component of the surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano

    Nanoparticles in SiH4-Ar plasma: Modelling and comparison with experimental data

    Get PDF
    Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow

    THE INFLUENCE OF CO ON THERMAL STABILITY AND GLASS-FORMING ABILITY OF Al-Ni-Co-R AMORPHOUS ALLOYS

    Full text link
    Amorphous ribbons of Al-Ni-Co-R compositions were produced by a standard planar flow casting method. Their kinetics of crystallization was studied by X-rays, DSC and DTA. Thermal stability and glass-forming ability of the alloys are determined.Исследование выполнено за счет гранта Российского научного фонда №22-23-00177

    Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)

    Full text link
    We present measurements of the energy loss of pions and electrons in drift chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the ALICE TRD. Microscopic calculations are performed using input parameters calculated with GEANT3. These calculations reproduce well the measured average and most probable values for pions, but a higher Fermi plateau is required in order to reproduce our electron data. The widths of the measured distributions are smaller for data compared to the calculations. The electron/pion identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.

    Space charge in drift chambers operated with the Xe,CO2(15%) mixture

    Full text link
    Using prototype modules of the ALICE Transition Radiation Detector we investigate space charge effects and the dependence of the pion rejection performance on the incident angle of the ionizing particle. The average pulse height distributions in the drift chambers operated with the Xe,CO2(15%) mixture provide quantitative information on the gas gain reduction due to space charge accumulating during the drift of the primary ionization. Our results demonstrate that the pion rejection performance of a TRD is better for tracks which are not at normal incidence to the anode wires. We present detailed simulations of detector signals, which reproduce the measurements and lend strong support to our interpretation of the measurements in terms of space charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth. A. Data files available at http://www-alice.gsi.de/tr

    Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)

    Full text link
    We present measurements of position and angular resolution of drift chambers operated with a Xe,CO2_2(15%) mixture. The results are compared to Monte Carlo simulations and important systematic effects, in particular the dispersive nature of the absorption of transition radiation and non-linearities, are discussed. The measurements were carried out with prototype drift chambers of the ALICE Transition Radiation Detector, but our findings can be generalized to other drift chambers with similar geometry, where the electron drift is perpendicular to the wire planes.Comment: 30 pages, 18 figure
    corecore