18,740 research outputs found
Attitudes Toward Breast Cancer Genetic Testing in Five Special Population Groups
Purpose: This study examined interest in and attitudes toward genetic testing in 5 different population groups.
Methods: The survey included African American, Asian American, Latina, Native American, and Appalachian women with varying familial histories of breast cancer. A total of 49 women were interviewed in person. Descriptive and nonparametric statistical techniques were used to assess ethnic group differences.
Results: Overall, interest in testing was high. All groups endorsed more benefits than risks. There were group differences regarding endorsement of specific benefits and risks: testing to “follow doctor recommendations” (p=0.017), “concern for effects on family” (p=0.044), “distrust of modern medicine” (p=0.036), “cost” (p=0.025), and “concerns about communication of results to others” (p=0.032). There was a significant inverse relationship between interest and genetic testing cost (p
Conclusion: Cost may be an important barrier to obtaining genetic testing services, and participants would benefit by genetic counseling that incorporates the unique cultural values and beliefs of each group to create an individualized, culturally competent program. Further research about attitudes toward genetic testing is needed among Asian Americans, Native Americans, and Appalachians for whom data are severely lacking. Future study of the different Latina perceptions toward genetic testing are encouraged
Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution.
Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved caspase-9. Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly increased cleaved caspase-3, -8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate that Thy-1, in a manner dependent upon its glycophosphatidylinositol anchor and lipid raft localization, regulates apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 deficient (Thy1-/-) mice displayed persistence of myofibroblasts in the resolution phase of bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis resolution. Apoptosis of myofibroblasts is decreased in Thy1-/- mice in the resolution phase. Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in initiating myofibroblast apoptosis that heralds the termination of the reparative response to bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/apoptosis should lead to novel therapeutic interventions for lung fibrosis
J/Psi Propagation in Hadronic Matter
We study J/ propagation in hot hadronic matter using a four-flavor
chiral Lagrangian to model the dynamics and using QCD sum rules to model the
finite size effects manifested in vertex interactions through form factors.
Charmonium breakup due to scattering with light mesons is the primary
impediment to continued propagation. Breakup rates introduce nontrivial
temperature and momentum dependence into the J/ spectral function.Comment: 6 Pages LaTeX, 3 postscript figures. Proceedings for Strangeness in
Quark Matter 2003, Atlantic Beach, NC, March 12-17, 2003; minor corrections
in version 2, to appear in J. Phys.
A Wide-field High Resolution HI Mosaic of Messier 31: I. Opaque Atomic Gas and Star Formation Rate Density
We have undertaken a deep, wide-field HI imaging survey of M31, reaching a
maximum resolution of about 50 pc and 2 km/s across a 95x48 kpc region. The HI
mass and brightness sensitivity at 100 pc resolution for a 25 km/s wide
spectral feature is 1500 M_Sun and 0.28 K. Our study reveals ubiquitous HI
self-opacity features, discernible in the first instance as filamentary local
minima in images of the peak HI brightness temperature. Local minima are
organized into complexes of more than kpc length and are particularly
associated with the leading edge of spiral arm features. Just as in the Galaxy,
there is only patchy correspondence of self-opaque features with CO(1-0)
emission. Localized opacity corrections to the column density exceed an order
of magnitude in many cases and add globally to a 30% increase in the atomic gas
mass over that inferred from the integrated brightness under the usual
assumption of negligible self-opacity. Opaque atomic gas first increases from
20 to 60 K in spin temperature with radius to 12 kpc but then declines again to
20 K beyond 25 kpc. We have extended the resolved star formation law down to
physical scales more than an order of magnitude smaller in area and mass than
has been possible previously. The relation between total-gas-mass- and
star-formation-rate-density is significantly tighter than that with
molecular-mass and is fully consistent in both slope and normalization with the
power law index of 1.56 found in the molecule-dominated disk of M51 at 500 pc
resolution. Below a gas-mass-density of about 5 M_Sun/pc^2, there is a
down-turn in star-formation-rate-density which may represent a real local
threshold for massive star formation at a cloud mass of about 5x10^4 M_Sun.Comment: Accepted for publication in ApJ, 34 pages, 20 figure
The Distal Cytoplasmic Tail Of The Influenza A M2 Protein Dynamically Extends From The Membrane
The influenza A M2 protein is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle. The monomeric subunits of the M2 homotetramer consist of an N-terminal ectodomain, a transmembrane domain, and a C-terminal cytoplasmic domain. The transmembrane domain forms a four-helix proton channel that promotes uncoating of virions upon host cell entry. The membrane-proximal region of the C-terminal domain forms a surface-associated amphipathic helix necessary for viral budding. The structure of the remaining ~34 residues of the distal cytoplasmic tail has yet to be fully characterized despite the functional significance of this region for influenza infectivity. Here, we extend structural and dynamic studies of the poorly characterized M2 cytoplasmic tail. We used SDSL-EPR to collect site-specific information on the mobility, solvent accessibility, and conformational properties of residues 61–70 of the full-length, cell-expressed M2 protein reconstituted into liposomes. Our analysis is consistent with the predominant population of the C-terminal tail dynamically extending away from the membranes surface into the aqueous medium. These findings provide insight into the hypothesis that the C-terminal domain serves as a sensor that regulates how M2 protein participates in critical events in the viral infection cycle
Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T
Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in ‘arterial’ and ‘venous’ blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between ‘arterial’ and ‘venous’ contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms
A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates
An NMR crystallographic approach incorporating multinuclear solid state NMR (SSNMR), X-ray structure determinations and density functional theory (DFT) are used to characterise the H bonding arrangements in benzoic acid (BZA) and the corresponding Group I alkali metal hydrogen dibenzoates (HD) systems. Since the XRD data often cannot precisely confirm the proton position within the hydrogen bond, the relationship between the experimental SSNMR parameters and the ability of gauge included plane augmented wave (GIPAW) DFT to predict them becomes a powerful constraint that can assist with further structure refinement. Both the 1H and 13C MAS NMR methods provide primary descriptions of the H bonding via accurate measurements of the 1H and 13C isotropic chemical shifts, and the individual 13C chemical shift tensor elements; these are unequivocally corroborated by DFT calculations, which together accurately describe the trend of the H bonding strength as the size of the monovalent cation changes. In addition, 17O MAS and DOR NMR form a powerful combination to characterise the O environments, with the DOR technique providing highly resolved 17O NMR data which helps verify unequivocally the number of inequivalent O positions for the conventional 17O MAS NMR to process. Further multinuclear MAS and static NMR studies involving the quadrupolar 7Li, 39K, 87Rb and 133Cs nuclei, and the associated DFT calculations, provide trends and a corroboration of the H bond geometry which assist in the understanding of these arrangements. Even though the crystallographic H positions in each H bonding arrangement reported from the single crystal X-ray studies are prone to uncertainty, the good corroboration between the measured and DFT calculated chemical shift and quadrupole tensor parameters for the Group I alkali species suggest that these reported H positions are reliable
The Economic Value of the Centers for Disease Control and Prevention Carbapenem-Resistant Enterobacteriaceae Toolkit
OBJECTIVEWhile previous work showed that the Centers for Disease Control and Prevention toolkit for carbapenem-resistant Enterobacteriaceae (CRE) can reduce spread regionally, these interventions are costly, and decisions makers want to know whether and when economic benefits occur.DESIGNEconomic analysisSETTINGOrange County, CaliforniaMETHODSUsing our Regional Healthcare Ecosystem Analyst (RHEA)-generated agent-based model of all inpatient healthcare facilities, we simulated the implementation of the CRE toolkit (active screening of interfacility transfers) in different ways and estimated their economic impacts under various circumstances.RESULTSCompared to routine control measures, screening generated cost savings by year 1 when hospitals implemented screening after identifying ≤20 CRE cases (saving 9,000) and by year 7 if all hospitals implemented in a regional coordinated manner after 1 hospital identified a CRE case (hospital perspective). Cost savings was achieved only if hospitals independently screened after identifying 10 cases (year 1, third-party payer perspective). Cost savings was achieved by year 1 if hospitals independently screened after identifying 1 CRE case and by year 3 if all hospitals coordinated and screened after 1 hospital identified 1 case (societal perspective). After a few years, all strategies cost less and have positive health effects compared to routine control measures; most strategies generate a positive cost-benefit each year.CONCLUSIONSActive screening of interfacility transfers garnered cost savings in year 1 of implementation when hospitals acted independently and by year 3 if all hospitals collectively implemented the toolkit in a coordinated manner. Despite taking longer to manifest, coordinated regional control resulted in greater savings over time.Infect Control Hosp Epidemiol 2018;39:516-524
Effects of Pore Walls and Randomness on Phase Transitions in Porous Media
We study spin models within the mean field approximation to elucidate the
topology of the phase diagrams of systems modeling the liquid-vapor transition
and the separation of He--He mixtures in periodic porous media. These
topologies are found to be identical to those of the corresponding random field
and random anisotropy spin systems with a bimodal distribution of the
randomness. Our results suggest that the presence of walls (periodic or
otherwise) are a key factor determining the nature of the phase diagram in
porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.
- …