1,109 research outputs found

    Body Image Dissatisfaction Among Third, Fourth, and Fifth Grade Children

    Get PDF
    Body image dissatisfaction has become increasingly more prevalent among the preadolescent population over recent years. This study examines the level of body image dissatisfaction among 261 third, fourth, and fifth grade girls and boys. A pictorial scale was used to assess how the participants viewed their current body shape, their ideal body shape, and what they believed to be the ideal body shape of the opposite gender. Overall results indicated that 50.6% of the children surveyed were dissatisfied with their current body shape, 41.8% wanted to be thinner, while 8.8% wanted to be larger. Fifty percent of the girls were dissatisfied with their current body shape, with 45.1% wishing to be thinner. Boys showed similar trends, with 48.9% dissatisfied and 38.9% wishing to be thinner. A greater percentage of boys wanted to be larger than their current body shape (12.3%) compared to girls (4.9%). A significant difference was found between genders regarding the difference between scores of their current self and ideal self, where girls selected a smaller ideal body shape than the boys. An encouraging finding was that the level of body dissatisfaction decreased from third grade to fifth grade among both genders. Girls, however, still wished to be thinner over time. Boys, on the other hand, indicated a preference for a somewhat larger body shape over time. These results indicate that body image dissatisfaction exists prior to adolescence among this sample of children. Prevention strategies and education are encouraged among this age group

    An exploration of concepts of community through a case study of UK university web production

    No full text
    The paper explores the inter-relation and differences between the concepts of occupational community, community of practice, online community and social network. It uses as a case study illustration the domain of UK university web site production and specifically a listserv for those involved in it. Different latent occupational communities are explored, and the potential for the listserv to help realize these as an active sense of community is considered. The listserv is not (for most participants) a tight knit community of practice, indeed it fails many criteria for an online community. It is perhaps best conceived as a loose knit network of practice, valued for information, implicit support and for the maintenance of weak ties. Through the analysis the case for using strict definitions of the theoretical concepts is made

    Bioactivity in silica/poly(Ī³-glutamic acid) solā€“gel hybrids through calcium chelation

    Get PDF
    Bioactive glasses and inorganic/organic hybrids have great potential as biomedical implant materials. Solā€“gel hybrids with interpenetrating networks of silica and biodegradable polymers can combine the bioactive properties of a glass with the toughness of a polymer. However, traditional calcium sources such as calcium nitrate and calcium chloride are unsuitable for hybrids. In this study calcium was incorporated by chelation to the polymer component. The calcium salt form of poly(Ī³-glutamic acid) (Ī³CaPGA) was synthesized for use as both a calcium source and as the biodegradable toughening component of the hybrids. Hybrids of 40 wt.% Ī³CaPGA were successfully formed and had fine scale integration of Ca and Si ions, according to secondary ion mass spectrometry imaging, indicating a homogeneous distribution of organic and inorganic components. 29Si magic angle spinning nuclear magnetic resonance data demonstrated that the network connectivity was unaltered with changing polymer molecular weight, as there was no perturbation to the overall Si speciation and silica network formation. Upon immersion in simulated body fluid a hydroxycarbonate apatite surface layer formed on the hybrids within 1 week. The polymer molecular weight (Mw 30ā€“120 kDa) affected the mechanical properties of the resulting hybrids, but all hybrids had large strains to failure, >26%, and compressive strengths, in excess of 300 MPa. The large strain to failure values showed that Ī³CaPGA hybrids exhibited non-brittle behaviour whilst also incorporating calcium. Thus calcium incorporation by chelation to the polymer component is justified as a novel approach in hybrids for biomedical materials

    Polarized actin and VE-Cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis

    Get PDF
    VEGFR-2/Notch signalling regulates angiogenesis in part by driving the remodelling of endothelial cell junctions and by inducing cell migration. Here, we show that VEGF-induced polarized cell elongation increases cell perimeter and decreases the relative VE-cadherin concentration at junctions, triggering polarized formation of actin-driven junction-associated intermittent lamellipodia (JAIL) under control of the WASP/WAVE/ARP2/3 complex. JAIL allow formation of new VE-cadherin adhesion sites that are critical for cell migration and monolayer integrity. Whereas at the leading edge of the cell, large JAIL drive cell migration with supportive contraction, lateral junctions show small JAIL that allow relative cell movement. VEGFR-2 activation initiates cell elongation through dephosphorylation of junctional myosin light chain II, which leads to a local loss of tension to induce JAIL-mediated junctional remodelling. These events require both microtubules and polarized Rac activity. Together, we propose a model where polarized JAIL formation drives directed cell migration and junctional remodelling during sprouting angiogenesis

    Efficacy of omalizumab in mastocytosis: allusive indication obtained from a prospective, double-blind, multicenter study (XOLMA Study)

    Full text link
    BACKGROUND: Patients with mastocytosis often suffer from a variety of symptoms caused by mast cell mediators where treatments remain difficult, showing various success rates. Omalizumab, a monoclonal anti-IgE antibody, has been postulated to have a positive impact on mastocytosis-associated symptoms such as flush, vertigo, gastrointestinal problems, or anaphylaxis. OBJECTIVE: To investigate the efficacy and safety of omalizumab in systemic mastocytosis. METHODS: Patients with histologically proven mastocytosis were investigated in a multicenter prospective double-blind placebo-controlled trial to receive either omalizumab or placebo, dosed according to IgE and body weight. The primary endpoint was change in the AFIRMM activity score after 6 months of treatment. Different laboratory parameters were analyzed. RESULTS: Sixteen patients were analyzed: 7 to omalizumab and 9 to placebo (mean age 47.7 Ā± 13.8 vs. 45.4 Ā± 8.8 years; 66.6 vs. 85.7% were female; mean disease duration 10.0 Ā± 5.1 vs. 4.5 Ā± 2.9 years, respectively). After 6 months the median AFIRMM score decreased 50% from 52.0 to 26.0 in the omalizumab group versus 104.0-102.0 in the placebo group (p = 0.286); however, the difference was not significant (p = 0.941). Secondary endpoints, including the number of allergic reactions, changes in major complaints, wheal-and-flare reaction due to mechanical irritation (Darier's sign), and frequency of the use of mastocytosis-specific drugs improved in the omalizumab group, but not significantly. Adverse events like urticaria, bronchospasm, and anaphylactic shock showed no significant difference between the groups. No severe adverse events occurred. FcĪµRI (Fc-epsilon receptor) expression on basophils decreased after receiving omalizumab versus placebo. CONCLUSION: Omalizumab was safe and showed a tendency to improve mastocytosis-related symptoms, in particular diarrhea, dizziness, flush, and anaphylactic reactions, including the AFIRMM score and secondary endpoints; however, the difference was not significant. Due to the small study size and difference at baseline between the study groups, further studies are required to confirm our findings

    Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    Get PDF
    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJunā€“cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ā‰¤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases

    Endothelial alpha-parvin controls integrity of developing vasculature and is required for maintenance of cell-cell junctions

    Get PDF
    RATIONALE: Angiogenesis and vessel integrity depend on the adhesion of endothelial cells (EC) to the extracellular matrix (ECM) and to adjacent ECs. The focal adhesion protein alpha-parvin (alpha-pv) is essential for vascular development. However, the role of alpha-pv in ECs in vivo is not known. OBJECTIVE: To determine the function of alpha-pv in ECs during vascular development in vivo and the underlying mechanisms. METHODS AND RESULTS: We deleted the alpha-pv gene specifically in ECs of mice to study its role in angiogenesis and vascular development. Here we show that endothelial-specific deletion of alpha-pv in mice results in late embryonic lethality associated with hemorrhages and reduced vascular density. Postnatal induced EC-specific deletion of alpha-pv leads to retinal hypovascularization due to reduced vessel sprouting and excessive vessel regression. In the absence of alpha-pv, blood vessels display impaired VE-cadherin junction morphology. In vitro, alpha-pv deficient ECs show reduced stable adherens junctions, decreased monolayer formation and impaired motility, associated with reduced formation of integrin-mediated cell-ECM adhesion structures and an altered actin cytoskeleton. CONCLUSIONS: Endothelial alpha-pv is essential for vessel sprouting and for vessel stability
    • ā€¦
    corecore