169 research outputs found

    Systems Analysis of Chaperone Networks in the Malarial Parasite Plasmodium falciparum

    Get PDF
    Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein–protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70–Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology

    Facilitating functional annotation of chicken microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information.</p> <p>Results</p> <p>We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (<it>AGOM</it>) tool to help researchers to quickly retrieve corresponding functional information for their dataset.</p> <p>Conclusion</p> <p>Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using <it>AGOM </it>tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and will be updated on regular basis.</p

    Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study

    Get PDF
    We present findings of a cancer multidisciplinary-team (MDT) coordinated mainstreaming pathway of unselected 5-panel germline BRCA1/BRCA2/RAD51C/RAD51D/BRIP1 and parallel somatic BRCA1/BRCA2 testing in all women with epithelial-OC and highlight the discordance between germline and somatic testing strategies across two cancer centres. Patients were counselled and consented by a cancer MDT member. The uptake of parallel multi-gene germline and somatic testing was 97.7%. Counselling by clinical-nurse-specialist more frequently needed >1 consultation (53.6% (30/56)) compared to a medical (15.0% (21/137)) or surgical oncologist (15.3% (17/110)) (p 0.001). The median age was 54 (IQR = 51–62) years in germline pathogenic-variant (PV) versus 61 (IQR = 51–71) in BRCA wild-type (p = 0.001). There was no significant difference in distribution of PVs by ethnicity, stage, surgery timing or resection status. A total of 15.5% germline and 7.8% somatic BRCA1/BRCA2 PVs were identified. A total of 2.3% patients had RAD51C/RAD51D/BRIP1 PVs. A total of 11% germline PVs were large-genomic-rearrangements and missed by somatic testing. A total of 20% germline PVs are missed by somatic first BRCA-testing approach and 55.6% germline PVs missed by family history ascertainment. The somatic testing failure rate is higher (23%) for patients undergoing diagnostic biopsies. Our findings favour a prospective parallel somatic and germline panel testing approach as a clinically efficient strategy to maximise variant identification. UK Genomics test-directory criteria should be expanded to include a panel of OC genes.Peer reviewe

    Relational approaches to poverty in rural India: social, ecological and technical dynamics

    Get PDF
    Poverty is now widely recognised as multidimensional, with indicators including healthcare, housing and sanitation. Yet, relational approaches that foreground political-cultural processes remain marginalised in policy discourses. Focusing on India, we review a wide range of relational approaches to rural poverty. Beginning with early approaches that focus on structural reproduction of class, caste and to a lesser extent gender inequality, we examine new relational approaches developed in the last two decades. The new approaches examine diverse ways in which poverty is experienced and shapes mobilisations against deprivation. They draw attention to poor people’s own articulations of deprivation and alternate conceptions of well-being. They also show how intersecting inequalities of class, caste and gender shape governance practices and political movements. Despite these important contributions, the new relational approaches pay limited attention to technologies and ecologies in shaping the experience of poverty. Reviewing studies on the Green Revolution and wider agrarian transformations in India, we then sketch the outlines of a hybrid relational approach to poverty that combines socio-technical and -ecological dynamics. We argue that such an approach is crucial to challenge narrow economising discourses on poverty and to bridge the policy silos of poverty alleviation and (environmentally) sustainable development

    Massively Parallel Sequencing and Analysis of the Necator americanus Transcriptome

    Get PDF
    The blood-feeding hookworm Necator americanus infects hundreds of millions of people. To elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of adult Necator americanus was studied using next-generation sequencing and in silico analyses. Contigs (n = 19,997) were assembled from the sequence data; 6,771 of them had known orthologues in the free-living nematode Caenorhabditis elegans, and most encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%). Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. Essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have human homologues. These candidate targets were inferred to be linked to mitochondrial metabolism or amino acid synthesis. This investigation provides detailed insights into the transcriptome of the adult stage of N. americanus

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2D TiO2 nanosheets upon annealing of a freeze-cast precursor

    Get PDF
    Titanium dioxide modified with 3 wt% La was prepared via a green freeze-casting method, and its photocatalytic activity was tested in terms of its ability to degrade 4-chlorophenol (4-CP) and remove total organic carbon (TOC). Under annealing conditions, the freeze-cast precursor was transformed into an La-modified anatase with a well-defined 2D TiO(2) nanosheet morphology. Rietveld refinement of the X-ray diffraction patterns confirmed the substitutional nature of the La cation that induced local structural variations and involved subtle ion displacement in the TiO(2) lattice due to the ionic size effect. Despite nearly identical tetragonal structures, replacement of Ti with La alters the photocatalytic activity through a reduction in band gap energies and an increase in charge carrier mobility. Material annealed at 650 °C exhibited the highest photocatalytic performance and achieved efficient TOC removal. Upon annealing at 800 °C, nanoscale lanthanum-enriched regions were generated due to the diffusive migration of La cations and phase transition from anatase to rutile. The La(3+) cation, acting as a structural promoter, supported 2D TiO(2) growth with well controlled crystallite size, surface area and porosity. La(3+) could be regarded as a potential electronic promoter that can reduce the band gap of 2D TiO(2) nanosheets and can provide a signature of the electron transfer and carrier charge separation. Both methods, kinetics of degradation of 4-CP and TOC, provided similar results, revealing that the photocatalytic activity under UV light irradiation increased in the order 950C < 500 °C < 800 °C < 650 °C < TiO(2)-P25

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore