76 research outputs found

    Pregnancy outcome in women with Gaucher disease type 1 who had unplanned pregnancies during eliglustat clinical trials

    Get PDF
    Gaucher disease type 1 (GD1) is an inherited lysosomal storage disorder caused by deficient enzymatic activity of acid β-glucosidase, resulting in accumulation of its substrate glucosylceramide, leading to debilitating visceral, hematologic, and skeletal manifestations. Women with GD1 are at increased risk for complications during pregnancy, delivery, and postpartum. Treatment with enzyme replacement therapy is generally recommended before and during pregnancy to reduce risks. Eliglustat, an oral substrate-reduction therapy, is a first-line treatment for adults with GD1 adults who have extensive, intermediate, or poor CYP2D6-metabolizer phenotypes (>90% of patients). We report on pregnancy outcomes among women in eliglustat trials who had unplanned pregnancies and female partners of men in the trials. In four phase 2 and 3 eliglustat trials of 393 adults with GD1, women of childbearing potential were required to use contraception, have monthly pregnancy tests, and discontinue eliglustat promptly if pregnant. In phase 2 and 3 trials, 18 women had 19 pregnancies, resulting in 14 healthy infants from 13 pregnancies (one set of twins), three elective terminations, one ectopic pregnancy, one spontaneous abortion, and one in utero death. Median estimated eliglustat exposure duration during pregnancy was 38 days. In phase 1 trials (non-GD1 subjects), one woman had a spontaneous abortion. Partners of 16 eliglustat-treated men with GD1 had 18 pregnancies, all resulting in healthy infants. Eliglustat is not approved during pregnancy due to limited data. Guidelines for clinicians and patients with GD that address use of eliglustat in women of childbearing potential are needed

    The PMIP4 contribution to CMIP6 – Part 2: two interglacials, scientific objective and experimental design for Holocene and last interglacial simulations

    Get PDF
    Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for Tier 1 simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127,000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional CMIP6 Tier 2 and Tier 3 sensitivity experiments of PMIP4, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically

    Eliglustat maintains long-term clinical stability in patients with Gaucher disease type 1 stabilized on enzyme therapy

    Get PDF
    In the phase 3 trial of eliglustat in patients with Gaucher disease type 1 already stabilized with enzyme therapy (ENCORE), at one year, eliglustat was non-inferior to imiglucerase enzyme therapy in maintaining stable platelet counts, hemoglobin concentrations, and spleen and liver volumes. After this primary analysis period, patients entered a long-term extension phase in which all received eliglustat. Duration on eliglustat ranged from 2 to 5 years, depending on timing of enrollment (which spanned 2 years), treatment group to which patients were randomized, and whether they lived in the United States when commercial eliglustat became available. Here we report long-term safety and efficacy of eliglustat for 157 patients who received eliglustat in the ENCORE trial; data are available for 46 patients who received eliglustat for 4 years. Mean hemoglobin concentration, platelet count, and spleen and liver volumes remained stable for up to 4 years. Year to year, all four measures remained collectively stable (composite endpoint relative to baseline values) in ≥85% of patients, as well as individually in ≥92%. Mean bone mineral density Z-scores (lumbar spine and femur) remained stable and were maintained in the healthy reference range throughout. Eliglustat was well-tolerated over 4 years; 4 (2.5%) patients withdrew due to adverse events that were considered related to the study drug. No new or long-term safety concerns were identified. Clinical stability assessed by composite and individual measures was maintained in adults with Gaucher disease type 1 treated with eliglustat who remained in the ENCORE trial for up to 4 years.The ENCORE trial was funded and conducted by Sanofi Genzyme

    Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    Get PDF
    © 2018 International Society for Microbial Ecology All rights reserved. Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature

    Ongoing geographical spread of Tomato yellow leaf curl virus

    Get PDF
    Tomato yellow leaf curl virus (TYLCV) seriously impacts tomato production throughout tropical and sub-tropical regions of the world. It has a broad geographical distribution and continues to spread to new regions in the Indian and Pacific Oceans including Australia, New Caledonia and Mauritius. We undertook a temporally-scaled, phylogeographic analysis of all publicly available, full genome sequences of TYLCV, together with 70 new genome sequences from Australia, Iran and Mauritius. This revealed that whereas epidemics in Australia and China likely originated through multiple independent viral introductions from the East-Asian region around Japan and Korea, the New Caledonian epidemic was seeded by a variant from the Western Mediterranean region and the Mauritian epidemic by a variant from the neighbouring island of Reunion. Finally, we show that inter-continental scale movements of TYLCV to East Asia have, at least temporarily, ceased, whereas long-distance movements to the Americas and Australia are probably still ongoing

    Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    Get PDF
    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plantassociated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8–35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature

    The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World

    Get PDF
    The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCV's diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905–1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements
    corecore