795 research outputs found

    Long slit spectroscopy of a sample of isolated spirals with and without an AGN

    Full text link
    We present the kinematical data obtained for a sample of active (Seyfert) and non active isolated spiral galaxies, based on long slit spectra along several position angles in the Halpha line region and, in some cases, in the Ca triplet region as well. Gas velocity distributions are presented, together with a simple circular rotation model that allows to determine the kinematical major axes. Stellar velocity distributions are also shown. The main result is that active and control galaxies seem to be equivalent in all kinematical aspects. For both subsamples, the departure from pure circular rotation in some galaxies can be explained by the presence of a bar and/or of a spiral arm. They also present the same kind of peculiarities, in particular, S-shape structures are quite common near the nuclear regions. They define very similar Tully-Fisher relations. Emission line ratios are given for all the detected HII regions; the analysis of the [NII]/Halpha metallicity indicator shows that active and non-active galaxies have indistinguishable disk metallicities. These results argue in favour of active and non-active isolated spiral galaxies having essentially the same properties, in agreement with our previous results based on the analysis of near infrared images. It appears now necessary to confirm these results on a larger sample.Comment: 35 pages, 54 figures, Accepted for publication in Astronomy & Astrophysics The full paper with its figures is available on the anonymous account of ftp.iap.fr in /home/ftp/pub/from_users/durret/marquez.ps.gz (999 kb

    Magnetic susceptibility of insulators from first principles

    Full text link
    We present an {\it ab initio} approach for the computation of the magnetic susceptibility χ\chi of insulators. The approach is applied to compute χ\chi in diamond and in solid neon using density functional theory in the local density approximation, obtaining good agreement with experimental data. In solid neon, we predict an observable dependence of χ\chi upon pressure.Comment: Revtex, to appear in Physical Review Lette

    Integral field spectroscopy of type-II QSOs at z=0.3-0.4

    Get PDF
    We present and analyse integral-field observations of six type-II QSOs with z=0.3-0.4, selected from the Sloan Digital Sky Survey (SDSS). Two of our sample are found to be surrounded by a nebula of warm ionized gas, with the largest nebula extending across 8" (40 kpc). Some regions of the extended nebulae show kinematics that are consistent with gravitational motion, while other regions show relatively perturbed kinematics: velocity shifts and line widths too large to be readily explained by gravitational motion. We propose that a ~20 kpc x20 kpc outflow is present in one of the galaxies. Possible mechanisms for triggering the outflow are discussed. In this object, we also find evidence for ionization both by shocks and the radiation field of the AGN.Comment: 6 pages, 5 figures, accepted by MNRAS Letter

    Integral field spectroscopy of nitrogen overabundant blue compact dwarf galaxies

    Get PDF
    We study the spatial distribution of the physical properties and of oxygen and nitrogen abundances in three Blue Compact Dwarf Galaxiess (HS 0128+2832, HS 0837+4717 and Mrk 930) with a reported excess of N/O in order to investigate the nature of this excess and, particularly, if it is associated with Wolf-Rayet (WR) stars We have observed these BCDs by using PMAS integral field spectroscopy in the optical spectral range (3700 - 6900 {\AA}), mapping their physical-chemical properties, using both the direct method and appropriate strong-line methods. We make a statistical analysis of the resulting distributions and we compare them with the integrated properties of the galaxies. Our results indicate that outer parts of the three galaxies are placed on the "AGN-zone" of the [NII]/H{\alpha} vs. [OIII]/H{\beta} diagnostic diagram most likely due to a high N/O combined with the excitation structure in these regions. From the statistical analysis, it is assumed that a certain property can be considered as spatially homogeneous (or uniform) if a normal gaussian function fits its distribution in several regions of the galaxy. Moreover, a disagreement between the integrated properties and the mean values of the distribution usually appears when a gaussian does not fit the corresponding distribution. We find that for Mrk 930, the uniformity is found for all parameters, except for electron density and reddening. The rotation curve together with the H{\alpha} map and UV images, reveal a perturbed morphology and possible interacting processes. The N/O is found to be constant in the three studied objects at spatial scales of the order of several kpc so we conclude that the number of WR stars estimated from spectroscopy is not sufficient to pollute the ISM and to produce the observed N/O excess in these objectsComment: 17 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    A photoionization model of the spatial distribution of the optical and mid-IR properties in NGC595

    Full text link
    We present a set of photoionization models that reproduce simultaneously the observed optical and mid-infrared spatial distribution of the HII region NGC595 in the disk of M33 using the code CLOUDY. Both optical (PMAS-Integral Field Spectroscopy) and mid-infrared (8 mi and 24 mi bands from Spitzer) data provide enough spatial resolution to model in a novel approach the inner structure of the HII region. We define a set of elliptical annular regions around the central ionizing cluster with an uniformity in their observed properties and consider each annulus as an independent thin shell structure. For the first time our models fit the relative surface brightness profiles in both the optical (Halpha, [OII], [OIII]) and the mid-infrared emissions (8 mi and 24 mi), under the assumption of a uniform metallicity (12+log(O/H) = 8.45; Esteban et al. 2009) and an age for the stellar cluster of 4.5 Myr (Malumuth et al. 1996). Our models also reproduce the observed uniformity of the R23 parameter and the increase of the [OII]/[OIII] ratio due to the decrease of the ionization parameter. The variation of the Halpha profile is explained in terms of the differences of the occupied volume (the product of filling factor and total volume of the shell) in a matter-bounded geometry, which also allows to reproduce the observed pattern of the extinction. The 8 mi/24 mi ratio is low (ranging between 0.04 and 0.4) because it is dominated by the surviving of small dust grains in the HII region, while the PAHs emit more weakly because they cannot be formed in these thin HII gas shells. The ratio is also well fitted in our models by assuming a dust-to-gas ratio in each annulus compatible with the integrated estimate for the whole HII region after the 70 mi, and 160 mi Spitzer observations.Comment: Accepted for publication in MNRAS, 9 pages, 17 figure

    Hydrodynamic excitations of trapped dipolar fermions

    Full text link
    A single-component Fermi gas of polarized dipolar particles in a harmonic trap can undergo a mechanical collapse due to the attractive part of the dipole-dipole interaction. This phenomenon can be conveniently manipulated by the shape of the external trapping potential. We investigate the signatures of the instability by studying the spectrum of low-lying collective excitations of the system in the hydrodynamic regime. To this end, we employ a time-dependent variational method as well as exact numerical solutions of the hydrodynamic equations of the system.Comment: 4 pages, 2 eps figures, final versio

    The interplay between ionized gas and massive stars in the HII galaxy IIZw70: integral field spectroscopy with PMAS

    Full text link
    We performed an integral field spectroscopic study for the HII galaxy IIZw70 in order to investigate the interplay between its ionized interstellar medium (ISM) and the massive star formation (SF). Observations were taken in the optical spectral range (3700-6800 A) with the Potsdam Multi-Aperture Spectrophotometer (PMAS) attached to the 3.5 m telescope at CAHA. We created and analysed maps of spatially distributed emission-lines, continuum emission and properties of the ionized ISM (e.g. physical-chemical conditions, dust extinction, kinematics). We investigated the relation of these properties to the spatial distribution and evolutionary stage of the massive stars. For the first time we have detected the presence of Wolf-Rayet (WR) stars in this galaxy. The peak of the ionized gas emission coincides with the location of the WR bump. The region of the galaxy with lower dust extinction corresponds to the region that shows the lowest values of velocity dispersion and radial velocity. The overall picture suggests that the ISM of this region is being disrupted via photoionization and stellar winds, leading to a spatial decoupling between gas+stars and dust clouds. The bulk of dust appears to be located at the boundaries of the region occupied by the probable ionizing cluster. We also found that this region is associated to the nebular emission in HeII4686 and to the intensity maximum of most emission lines. This indicates that the hard ionizing radiation responsible for the HeII4686 nebular emission can be related to the youngest stars. Within \sim 0.4 x 0.3 kpc^2 in the central burst, we derived O/H using direct determinations of Te[OIII]. We found abundances in the range 12+log(O/H)=7.65-8.05, yielding an error-weighted mean of 12+log(O/H)=7.86 ±\pm0.05.Comment: 10 pages, 10 figures, accepted for publication in A&A, minor changes adde

    The Mass-Metallicity relation explored with CALIFA: I. Is there a dependence on the star formation rate?

    Full text link
    We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly \sim3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature (σΔlog(O/H)=\sigma_{\Delta{\rm log(O/H)}}=0.07 dex). Indeed, this dispersion is only slightly larger than the typical error derived for our oxygen abundances. However, we do not find any secondary relation with the star-formation rate, other than the one induced due to the primary relation of this quantity with the stellar mass. We confirm the result using the \sim3000 individual HII regions, for the corresponding local relations. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.Comment: 19 Pages, 8 figures, Accepted for Publishing in Astronomy and Astrophysics (A&A

    The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and Te-based literature data

    Full text link
    The use of IFS is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies both locally and at high redshift. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to the expected uncertainty of these calibrations as a function of the index value or abundance derived and the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of Te-based HII regions to date. This new dataset compiles the Te-based abundances of 603 HII regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present here a comparison between our revisited calibrations with a total of 3423 additional CALIFA HII complexes with abundances derived using the ONS calibration by Pilyugin et al. (2010). The combined analysis of Te-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality and coverage of the space of parameters. In particular, we infer that these indicators show shallower abundance dependencies and statistically-significant offsets compared to those of Pettini and Pagel (2004), Nagao et al. (2006) and P\'erez-Montero and Contini (2009). The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data) reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations),respectively.Comment: 12 pages, 5 figures, accepted for publication in A&
    corecore