283 research outputs found

    The Economic Recession: Early Impacts on Health Care Safety Net Providers

    Get PDF
    Examines how the recession and state and local budget cuts affected safety-net clinics' capacity to meet demand in five communities, the extent to which federal stimulus funds mitigated the impact, strategies for sustainability, and implications

    Balltracking: an highly efficient method for tracking flow fields

    Get PDF
    We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT). The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data. The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are visible moving features of known scale length

    Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere

    Full text link
    We study horizontal supergranule-scale motions revealed by TRACE observation of the chromospheric emission, and investigate the coupling between the chromosphere and the underlying photosphere. A highly efficient feature-tracking technique called balltracking has been applied for the first time to the image sequences obtained by TRACE (Transition Region and Coronal Explorer) in the passband of white light and the three ultraviolet passbands centered at 1700 {\AA}, 1600 {\AA}, and 1550 {\AA}. The resulting velocity fields have been spatially smoothed and temporally averaged in order to reveal horizontal supergranule-scale motions that may exist at the emission heights of these passbands. We find indeed a high correlation between the horizontal velocities derived in the white-light and ultraviolet passbands. The horizontal velocities derived from the chromospheric and photospheric emission are comparable in magnitude. The horizontal motions derived in the UV passbands might indicate the existence of a supergranule-scale magnetoconvection in the chromosphere, which may shed new light on the study of mass and energy supply to the corona and solar wind at the height of the chromosphere. However, it is also possible that the apparent motions reflect the chromospheric brightness evolution as produced by acoustic shocks which might be modulated by the photospheric granular motions in their excitation process, or advected partly by the supergranule-scale flow towards the network while propagating upward from the photosphere. To reach a firm conclusion, it is necessary to investigate the role of granular motions in the excitation of shocks through numerical modeling, and future high-cadence chromospheric magnetograms must be scrutinized.Comment: 5 figures, accepted by Astronomy & Astrophysic

    Increasing the Fine Structure Visibility of the Hinode SOT Ca II H Filtergrams

    Full text link
    We present the improved so-called Madmax (OMC) operator selecting maxima of convexities computed in multiple directions around each pixel rewritten in MatLab and shown to be very efficient for pattern recognition. The aim of the algorithm is to trace the bright hair-like features (for ex. chromospheric thin jets or spicules) of solar ultimate observations polluted by a noise of different origins. This popular spatial operator uses the second derivative in the optimally selected direction for which its absolute value has a maximum value. Accordingly, it uses the positivity of the resulting intensity signal affected by a superposed noise. The results are illustrated using a test artificially generated image and real SOT (Hinode) images are also used, to make your own choice of the sensitive parameters to use in improving the visibility of images.Comment: 12 pages, 3 figurs, submitted in Solar Physic

    Supporting researchers conducting qualitative research into sensitive, challenging, and difficult topics: Experiences and practical applications.

    Get PDF
    Qualitative researchers often engage in work addressing challenging, difficult, or sensitive topics and are consequently exposed to the participants’ narratives which may be emotionally charged, distressing, or compromising. These narratives occasionally rest heavy on a researcher’s conscience or may linger in the mind. Much literature has assessed how best to keep participants safe, but less attention has been given to how we keep researchers safe. We therefore document the following: (1) Our experiences of the issues presented by undertaking qualitative research involving challenging, difficult, or sensitive topics; and (2) Practical principles devised to overcome these issues, ensuring safety and wellbeing amongst researchers engaging in these types of qualitative research. We provide guidance for qualitative researchers of all levels of experience and expertise on how best to protect and support themselves, their colleagues, and other collaborating research staff, when undertaking qualitative research which might otherwise feel uncomfortable or overwhelming to tackle

    Pronounced Genetic Structure in a Highly Mobile Coral Reef Fish, Caesio cuning, in the Coral Triangle

    Get PDF
    The redbelly yellowtail fusilier Caesio cuning has a tropical Indo-West Pacific range that straddles the Coral Triangle, a region of dynamic geological history and the highest marine biodiversity on the planet. Previous genetic studies in the Coral Triangle indicate the presence of multiple limits to connectivity. However, these studies have focused almost exclusively on benthic, reef-dwelling species. Schooling, reef-associated fusiliers (Perciformes: Caesionidae) account for a sizable portion of the annual reef catch in the Coral Triangle, yet to date, there have been no indepth studies on the population structure of fusiliers or other mid-water, reef-associated planktivores across this region. We evaluated the genetic population structure of C. cuning using a 382 bp segment of the mitochondrial control region amplified from over 620 fish sampled from 33 localities across the Philippines and Indonesia. Phylogeographic analysis showed that individuals sampled from sites in western Sumatra belong to a distinct Indian Ocean lineage, resulting in pronounced regional structure between western Sumatra and the rest of the Coral Triangle (φCT = 0.4796, p \u3c 0.004). We found additional significant population structure between central Southeast Asia and eastern Indonesia (φCT = 0.0450, p \u3c 0.001). These data in conjunction with spatial analyses indicate that there are 2 major lineages of C. cuning and at least 3 distinct management units across the region. The location of genetic breaks as well as the distribution of divergent haplotypes across our sampling range suggests that current oceanographic patterns could be contributing to observed patterns of structure

    Pronounced Genetic Structure in a Highly Mobile Coral Reef Fish, Caesio Cuning, in the Coral Triangle

    Get PDF
    The redbelly yellowtail fusilier, Caesio cuning, has a tropical Indo-West Pacific range that straddles the Coral Triangle, a region of dynamic geological history and the highest marine biodiversity on the planet. Previous genetic studies in the Coral Triangle indicate the presence of regional limits to connectivity across this region. However, these have focused almost exclusively on benthic reef dwelling species. Schooling, reef-associated fusiliers (Perciformes: Caesionidae) account for a sizable portion of the annual reef catch in the Coral Triangle, yet to date, there have been no in depth studies on the population structure of fusiliers or other mid-water, reef-associated planktivores across this region. We evaluated the genetic population structure of C. cuning using a 382bp segment of the mitochondrial control region amplified from over 620 fish sampled from 33 localities across the Philippines and Indonesia. Phylogeographic analysis showed that individuals sampled from sites in western Sumatra belong to a distinct Indian-Ocean lineage, resulting in pronounced regional structure between western Sumatra and the rest of the Coral Triangle (ΦCT = 0.4796, p \u3c 0.0043). We measured additional significant population structure between central Southeast Asia and eastern Indonesia (ΦCT = 0.0450, 36 p \u3c 0.0002). These data in conjunction with spatial analyses indicate that there are two major lineages of C. cuning and at least three distinct management units across the region. The location of genetic breaks as well as the distribution of divergent haplotypes across our sampling range suggests that current oceanographic patterns could be contributing to observed patterns of structure

    Hydrodynamical simulations of convection-related stellar micro-variability. II. The enigmatic granulation background of the COROT target HD49933

    Full text link
    Local-box hydrodynamical model atmospheres provide statistical information about a star's emergent radiation field which allows one to predict the level of its granulation-related micro-variability. Space-based photometry is now sufficiently accurate to test model predictions. We aim to model the photometric granulation background of HD49933 as well as the Sun, and compare the predictions to the measurements obtained by the COROT and SOHO satellite missions. We construct hydrodynamical model atmospheres representing HD49933 and the Sun, and use a previously developed scaling technique to obtain the observable disk-integrated brightness fluctuations. We further performed exploratory magneto-hydrodynamical simulations to gauge the impact of small scale magnetic fields on the synthetic light-curves. We find that the granulation-related brightness fluctuations depend on metallicity. We obtain a satisfactory correspondence between prediction and observation for the Sun, validating our approach. For HD49933, we arrive at a significant over-estimation by a factor of two to three in total power. Locally generated magnetic fields are unlikely to be responsible, otherwise existing fields would need to be rather strong to sufficiently suppress the granulation signal. Presently suggested updates on the fundamental stellar parameters do not improve the correspondence; however, an ad-hoc increase of the HD49933 surface gravity by about 0.2dex would eliminate most of the discrepancy. We diagnose a puzzling discrepancy between the predicted and observed granulation background in HD49933, with only rather ad-hoc ideas for remedies at hand.Comment: 7 pages, 5 figures, accepted for publication in A&
    corecore