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Abstract. We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high
resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing
many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against
synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT).
The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial
and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation
data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data.
The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets
possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are
visible moving features of known scale length.
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1. Introduction

With the advent of satellite missions producing constant
streams of high resolution, high cadence solar data, the need for
highly efficient processing tools becomes more urgent. Future
missions such as Solar-B will produce an order of magnitude
more data, and to avoid drowning in the torrent of informa-
tion, new numerical methods are required. This paper presents
a highly efficient method of tracking photospheric flows from
data that shows the movement of granules. The data used as an
example is high resolution MDI continuum data, although the
method will work perfectly well on other high resolution so-
lar images, such as TRACE filtergrams and ground based tele-
scope images.

There are several methods that are commonly used to mea-
sure solar flow fields. Most of the methods rely on measuring
the motion of granules, to infer the underlying flow field that is
advecting them. Numerical models by Rieutard et al. (2001) in-
dicate that for spatial scales larger than 2.5 Mm and time scales
larger than 0.5 h, that granules do make good flow tracers, al-
though they may tend to underestimate the flow speed.

The most important method is Local Correlation
Tracking (LCT). This method involves calculating the
rigid translation of small image elements between consecutive
frames of data. The motion is calculated by the shift that gives
the highest correlation between the corresponding subimages.
November & Simon (1988) first demonstrated that this method
could be used to measure the proper-motion of solar granula-
tion, using high resolution images from the Sacramento Peak
Vacuum Tower Telescope. At a similar time Title et al. (1989)

also carried out a detailed study of the statistical properties of
granulation using LCT as a tool with data from the SOUP in-
strument on Spacelab-2. A description of the analysis of high
resolution MDI data using LCT may be found in Shine et al.
(2000), and an evaluation of the accuracy of this method, and
problems associated with using it may be found in Potts et al.
(2003). LCT has been used successfully on many different
types of data ranging from the highest resolution ground based
observations, to low resolution (2 arcsec) MDI dopplergrams,
where granulation is not resolved, but patterns formed by
granulation can be seen (Lisle et al. 2000). The strength of
conventional LCT lies in its simplicity and flexibility, but it
suffers from being computationally inefficient and is therefore
very slow for analysing the largest data sets.

Another tracking method is the Coherent Structure
Tracking (CST) method first used by Strous (1994) and further
developed by Roudier et al. (1999). This method takes high
resolution images, where individual granules can be clearly re-
solved, and labels and tracks individual granulation cells. This
technique has the potential for the highest resolution, although
care must be taken to avoid selection effects as the largest,
longest lived granules are easiest to track. This method does
not work well for the currently available satellite data, as the
resolution is not high enough to clearly track individual gran-
ules, but will probably work well with Solar-B data. It is fairly
complex to implement in comparison to LCT, and again com-
putationally intensive.

Time-distance heliosiesmology is another tracking tech-
nique that works in a very different way (Duvall et al. 1996).
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Fig. 1. One of the tracers or balls, floating on a simulated granulation
surface. As the peaks that represent the granulation cells move and
evolve, they push the ball around.

This method uses the measurement of difference in speed of
acoustic waves propagating in opposite directions to work out
the velocity of the bulk fluid. The spatial resolution of this
method is substantially lower than the other methods described
here (De Rosa et al. 2000).

In this paper we discuss a new tracking technique that pro-
duces highly accurate velocity fields, in a fraction of the time
taken by any other method. We first describe the method and
its implementation, and discuss the accuracy that can be ex-
pected from any velocity tracking method. We then describe
a method for producing simulated granulation flow fields and
demonstrate this new tracking method and LCT on the simu-
lated data. We finally present results for flow fields from real
MDI data, and show the evolution of a supergranular flow field
at high resolution.

2. Balltracking method

2.1. Overview

Granulation cells move about in the photosphere with a di-
rected random walk motion as they interact with each other and
are advected by supergranular flow fields. Imagine turning an
image of the granules into a moving surface, with granulation
cells represented by bumps or ripples, that form and move with
time. Now imagine this surface as the surface of a fluid, and
drop a small floating ball on to it. The ball will first settle to a
local minimum between a few granulation cells, with part of its
volume submerged. Figure 1 shows a ball on a simulated granu-
lation data surface, moving between several granulation peaks.
The ball will then be nudged by each bump that comes towards
it, and get caught in local minima between several moving rip-
ples. On average the ball will be pushed in the same direction as
the mean motion of the ripples. At all times the ball is moving
under the influence of several granulation cells, which are con-
stantly forming, moving and disappearing. The balls have mass
and momentum, such that if all the granulation cells pushing
a ball disappear, the ball will continue in the same direction.
This helps the method cope with missing and noisy data. The
momentum of the ball also makes it “predict” where to go at
the next time step, making this method highly computationally
efficient.

In order to track photospheric flows, thousands of these
trackers are released onto the moving surface and their motions
recorded and smoothed.

2.2. Generating tracking surfaces

The raw data we are using in this paper are SOHO MDI high
resolution continuum images (Scherrer et al. 1995). These were
chosen because of their freedom from seeing problems and
availability of long continuous runs. The data set we are using
is from a 64 h continuous run from 15–18th January 1997. The
run consists of high resolution continuum, magnetogram and
dopplergram images. The spatial resolution is 0.6 arcmin/pixel
with a 1 min cadence. We use a 384 × 1024 pixel (3.8 ×
10.2 arcmin), 36 h subset of this, (starting at 0930 on 15th
Jan.) moving with the sun’s rotation that contains only quiet
sun data. Within this there are three blocks of 8 consecutive
missing frames, and 34 individual missing frames, or frames
with missing data. It is impossible to track across the 8 min
gaps, as they are longer than the granulation lifetime, so the
tracking was stopped and restarted after the gaps. Individual
missing frames were replaced by taking an average of the two
neighbouring frames.

The data first needed to be processed to remove the solar
rotation and the solar oscillations. These two operations were
both done in one step, using a Fourier filter, and Fourier in-
terpolation. To do this each frame of data is first 2D Fourier
transformed. The transformed data is then masked to reject all
wavelengths except those that are required to display the gran-
ulation. In this work we kept Fourier components with wave-
lengths between 1.5–3.5 arcmin. The short wavelength limit of
1.5 arcmin is close to the maximum resolution of the instru-
ment (1.2 arcmin), and serves to reduce random single pixel
noise from the CCD. Note that this is also close to the typi-
cal size of a granulation cell, meaning that granules are only
barely resolved, and the smallest granules are not visible. The
phase part of the remaining Fourier components is then modi-
fied to apply the rigid interpolation to derotate the data, and the
result inverse transformed. Note that this rigid derotation does
not attempt to correct for the geometric projection distortion.
This reaches a maximum of about 10% for the extreme north-
ern edge of the data set, and is less than 5% for 75% of the data.
For smaller areas the distortion is not important, for example a
256×256 pixel region tracked over 12 h has a maximum distor-
tion of about 1%. This simple derotation method is chosen as
it avoids any phase errors caused by caused by interpolation. It
is also far more computationally efficient to remap and rescale
the velocity field obtained from the tracking (a 32 MB data set)
rather than the cumbersome raw data (around 6 GB). A full
discussion of the interpolation method may be found in Potts
et al. (2003). Note also that the filters used here are 2D Fourier
filters; there is no use of time domain filtering, as this can cause
spurious correlation between frames and distort the output data.
The derotated, filtered data is then normalised to give it a mean
of zero, and an rms value of one. A comparison of some raw
and some filtered MDI data can be seen in Fig. 2.
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Fig. 2. Comparison of MDI data before and after being Fourier filtered. The granulation cells are easily visible in the filtered data. An animated
version, that clearly shows the granulation motion may be found in balltrack_filtering.html which is available with the electronic
version of the article at http://www.edpsciences.org/aa.

Fig. 3. Cross section of a ball on a granulation surface. The ball pen-
etrates the surface, with the force on the ball from each surface point
proportional to the penetration distance.

2.3. Ball motion

Figure 3 shows a cross section of a ball and the surface sup-
porting it. The surface consists of the individual data points,
uniformly spaced in the xy plane. With barely resolved data
such as MDI data each ball typically rests on 10–16 data points.
Each data point exerts a force f i on the ball directed towards
the ball centre. The ball also experiences a downwards, gravity-
like force mg, proportional to its mass. The motion of the ball
in response to these forces may be written as:

mu̇ =
∑

i

f i + mg − αu. (1)

The term, αu, is a damping force, proportional to and directed
against the instantaneous velocity of the ball. This term is
needed to damp out oscillations about the local minimum the
ball is resting in. Each force component from the surface de-
pends on how far the surface point has penetrated into the
sphere, increasing linearly from zero when it is at the surface
of the sphere:

for ri < Rs, f i = k (1 − di) r̂ (2)

for ri > Rs, f i = 0 (3)

where di is the fractional penetration of each surface point,
di = (Rs − ri)/Rs, where Rs is the sphere radius and ri is the
penetration distance. The constant k determines how high the
ball floats on the surface, and is a function of the average pen-
etration distance.

2.4. Input parameters

To fully describe the motion of the ball, four non-dimensional
parameters are used. The parameters are scaled by dividing by
the characteristic length and time scales dc and tc, which are
the computational grid dimension and time interval for mea-
surements, and the characteristic velocity vc = dc/tc. These are
defined as:

R̃s =
Rs

dc
Sphere Radius

D̃p =
Dp

Rs
Average surface penetration

T̃d =
Td

tc
Damping characteristic time

Ãm =
δ(v/vc)
δ(T/tc)

Max velocity change per timestep.

Sphere radius R̃s

The sphere radius is chosen to match the typical size of the
features that we want to track. A sphere size much smaller than
the features will be too sensitive to short wavelength noise, a
sphere too large will not be sensitive to the features. A typical
value for R̃s that works well is around half the mean granule
spacing, which for high resolution MDI data is about R̃s = 2.

Average surface penetration D̃p

The value of the mean penetration depth is a compromise be-
tween accurate tracking and short wavelength noise rejection.
A large penetration depth is less sensitive to noise, but reacts
more slowly to features. A value of 0.2 is a good compromise
for filtered MDI data.

Damping characteristic time T̃d

In the absence of any driving force the velocity of the ball
will reduce as u = u0 exp(−t/T̃d). This term sets the length
of the ball’s “memory” of its past movements, and also the
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maximum speed it can attain. The damping force is necessary
for numerical stability. A value of T̃d = 1–2 gives good stabil-
ity, while still being able to cope with single missing frames
and the track the fastest features. Tracking speed and stability
can be increased by having a larger damping force in the verti-
cal direction than the horizontal direction. Increasing the verti-
cal damping to 10 times the horizontal damping works well.

Maximum ball acceleration Ãm

The maximum acceleration, which is roughly equivalent to the
“gravitational” force needs to be large enough to allow the balls
to track the fastest accelerating features, but no larger. If it is too
large, the damping term needs to be increased to an excessive
value to maintain stability. An optimum value for MDI granu-
lation data is Am = 0.5.

The equation of motion can be expressed in terms of these
parameters.

δu = δt

 2Am

D̃pπR̃s
2

∑
i

di − Ãmĝ − T̃du

 (4)

where ĝ is the unit vector in the downwards or “gravity” direc-
tion. A full derivation may be found in Appendix A.1.

2.5. Tracking procedure

To run the tracking procedure we proceed as follows

1. Choose number of balls to use. This is a compromise be-
tween trying to track every possible feature, and avoiding
multiple balls tracking the same feature.

2. Divide the data surface into a grid, such that one ball will
be in each grid cell. Randomly position a ball in each grid
cell, just above the surface of the data plane.

3. Let each ball settle under gravity to the nearest local mini-
mum on the data plane.

4. Update the surface to the next time step. Depending on the
time sampling rate it can help stability to insert an interme-
diate frame that is the average of its neighbours between
each data frame. For high resolution MDI data it helps to
reduce the noise considerably, although it doubles the com-
putational time.

5. Move the balls, as described by Eq. (4), and store the new
position.

6. Remove any balls that have become too close to each other,
and so are tracking the same feature. This is important, oth-
erwise the smoothing statistics are badly damaged. It also
prevents balls collecting at regions of flow convergence.
Also remove any that have fallen off the edge of the grid or
sunk below the surface. All balls are replaced in the region
that has the lowest ball density. This allows the flow pattern
in regions of strong divergence to be measured, preventing
them from being swept clean of balls.

7. Repeat from Step 4 for all data.

The output from this procedure is many individual ball tracks.
A small subset of them from tracking synthetic data can be seen
in Fig. 4, along with the underlying flow field.
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Fig. 4. A small subset of ball tracks from synthetic data, with under-
lying velocity field as arrows. The red and black colouring is to help
distinguish different tracks.

3. Smoothing and rescaling the output data

The result of the balltracking procedure is a large number of
unevenly spatially distributed velocity samples of a very noisy
velocity field. To extract the underlying velocity field the data
needs to be smoothed and resampled to a regular grid. Both
these operations are done at the same time. First we allocate a
Gaussian spatial weighting function to each ball velocity sam-
ple for each grid point (xi, yi):

wn,t =

exp
−r2

n,t

2σ2

N∑
n=1

exp
−r2

n,t

2σ2

(5)

where N is the total number of balls and ball n at time t
has velocity un,t and is at position (xn,t, yn,t). rn,t is the dis-
tance between the grid point and the ball position, given by
rn,t =

√
(xn,t − xi)2 + (yn,t − yi)2. The value of the smoothed

velocity at the grid point (xi, yi) and time t is then given by:

V(xi, yi, t) =
t+∆t/2∑
t−∆t/2

N∑
n=1

wn,tun,t. (6)

This method uses a Gaussian weighted spatial “sphere of influ-
ence” to each ball velocity sample. The smoothing radius used,
σ, equivalent to the maximum spatial resolution recoverable, is
a trade off between spatial and time resolution. If a high spa-
tial resolution is chosen the time resolution is poor. Note that
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although this is a property of the smoothing method, it is also a
property of the underlying data, and even with perfect tracking
of every granule, the same compromise has to be made. This is
covered in more detail in the next section.

3.1. Smoothing resolution

The smoothing process is a compromise between spatial and
temporal resolution. There is a finite resolution limit beyond
which no motion tracking method that relies upon granular mo-
tions can improve, no matter how perfectly the motions are
tracked. Consider one component of the velocity of granules
in a given region to be normally distributed about some local
mean vu (the underlying velocity field), with variance σ2

u. The
smoothing process takes the mean of a sample of these velocity
values. If we are smoothing in time and space, the number of
actual samples is given by:

n = π
( Rs

∆r

)2 Ts

∆t
(7)

where Rs and Ts are the sample region radius and timelength,
and ∆r and ∆t are the time and space sampling intervals. If all
the samples are independent of each other then the expected
standard deviation σv of a velocity measure made from the
samples is simply:

σv =
σu√

n
· (8)

If, however, the samples are not completely independent of
each other, the effective number of samples is reduced. If we
assume that the time samples have a Gaussian autocorrela-
tion function, of width σt, the effective number of time sample
points n∗t in time T is given by:

n∗t =
T
∆t

erf

(
∆t

2
√

2σt

)
(9)

where erf is the error function of a normal distribution.
Similarly for a characteristic spatial autocorrelation length σr,
the effective number of spatial samples in an area πR2

s is:

n∗r = π
[

Rs

∆r
erf

(
∆r

2
√

2σr

)]2

· (10)

For samples taken at intervals significantly larger than the cor-
relation scale, the error function term tends rapidly to one and
may be ignored. For the case of very frequent samples, the ef-
fective sampling frequency becomes only a function of the au-
tocorrelation scale, and defines the maximum recoverable res-
olution. For the time samples:

n∗t →
Ts√
2πσt

as
∆t
σt
→ 0, (11)

and for space samples:

n∗r → π
[

Rs√
2πσr

]2

=
1
2

(
Rs

σr

)2

as
∆r
σr
→ 0. (12)

The minimum standard deviation that may be expected for the
velocity field, derived from the granular motions is therefore

limited by the autocorrelation functions of the granular motions
and is given by:

σ∗v =
σu√
n∗rn∗t

= σu

2√2π

(
σr

Rs

)2
σt

Ts


1
2

· (13)

For real granulation, the observed distribution of physical pa-
rameters is strongly dependent on the measuring scheme and
resolution of measurements. The distribution of a single x or y
component of translational velocities may be approximated by
a Gaussian distribution with σu = 800 m s−1 (Roudier et al.
1999).

The temporal autocorrelation function for the granule ve-
locity can be estimated by considering the number of events
that change its velocity through its lifetime. The lifetime is
poorly defined, ranging from values of around 5 min found by
Title et al. (1989) from SOUP data, to only 140 s from higher
resolution Pic du Midi images by Roudier et al. (1999). As the
images we are using are low resolution, we will not see the
smallest, shortest lived granules so we will assume a lifetime
of 5 min. The main events that change the granule velocity are
caused by nearest neighbour granules appearing and disappear-
ing. If we assume that the granule has 6 nearest neighbours
(hexagonal packing), then we can say that the granule changes
direction, on average 6 times in its lifetime, giving an average
autocorrelation time of around σt ≈ 50 s.

The spatial autocorrelation function for granular velocities
is also hard to define. Individual granules interact strongly with
their nearest neighbours, but not in such a way as to correlate
their motions significantly. Consequently we are choosing a
correlation length equal to the mean granule spacing of around
1 Mm, derived from high resolution ground based observations
(Berrelli et al. 2002).

Figure 5 shows the minimum random error obtainable on
any velocity field measured from the granulation motion, as-
suming a measuring cadence of 1 minute for a range of spatial
and temporal smoothing parameters. This result assumes per-
fect tracking of all granules. For MDI data the smallest granules
are not resolved, resulting in a lower spatial density of samples,
so the errors will be slightly larger than this.

Due to the uncertainties in the correlation scales this result
may have considerable error. As an example, for a four hour
average, smoothed with a radius of 4 MDI pixels, the min-
imum uncertainty expected in the velocity would be around
65+30
−15 m s−1

3.2. Speed calibration

One problem of this method is that the balls do not track the
speed of the underlying flow, they always move on average
slower than it. There are two reasons for this. The first is that
the balls are not always tracking features, they spend a pro-
portion of their time searching for local minima to track. If
the balls spend a fraction of the time α tracking features, then
the maximum average velocity that can be obtained is v = αv0.
The second, and most important reason, is that the balls are
moving under the influence of two forces. There is a stochastic
driving term, A that on average pushes the balls in the direc-
tion of the flow, and a damping or drag term B that tries to stop
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Fig. 5. The maximum velocity accuracy that can be obtained from
granulation for various temporal and spatial smoothing windows, as-
suming a sampling cadence of 1 min.

them. The equation of motion for the balls with respect to the
velocity of the driving field V0 can therefore be expressed as:

dv
dt
= A(αv0 − v) − Bv. (14)

The terminal velocity of a ball in the field, when dv/dt = 0 is
therefore:

v = v0

(
αA

A + B

)
· (15)

As α is always less than one, the velocity obtained from the
balltrack method will always be a constant scale factor less than
the true underlying velocity. This scale factor is related to the
damping rate, the statistical properties of the data, and the size
of the driving term. Consequently it will be a constant, for any
statistically similar data sets. Calculating the constant directly
from the balltrack data is hard.

A simple and quick way to calibrate the data is to use lo-
cal correlation tracking (LCT) on a small subset of data. From
Balltrack, the spatial distribution of the velocity field is known.
A small subset of this known velocity field, that contains re-
gions of high x and y velocity is chosen. LCT, using Fourier
interpolation to avoid systematic errors, as described in Potts
et al. (2003), is performed on this area. Not very many sample
areas are required, around 25 will do, depending on the accu-
racy required. A correlation plot between the velocity compo-
nents obtained from the two methods is then done, and the gra-
dient gives the scaling factor. This scaling factor will be correct
for any data set of the same type, providing that the balltrack
parameters are kept constant. This method is simple to imple-
ment and fast.

If only the spatial shape of the velocity field is required, for
example for studying the evolution of supergranular flow fields,
the uncalibrated raw balltrack data can be used. The velocities
obtained in this case are typically 70–85% of the true velocities.

4. Generating test data

In order to evaluate the tracking procedures it is necessary to
generate a fake granulation field with a known underlying flow
pattern. To do this we make a simple model that simulates the
essential features of a real granulation field. The model works
by considering the motion of granulation cell centres, and their
interaction with each other.

We start with a spatial distribution of cell centres, randomly
arranged, but with uniform density. Each granulation cell be-
haves as an automaton that is repelled by all the other cells
around it. The cells have a range of lifetimes, distributed nor-
mally about a mean value. The size of a cell varies throughout
its life, starting at zero, rising to a maximum, then falling back
to zero. When it is large it repels other cells more strongly,
when it is small it is more easily repelled by other cells.

The motion of the cell centre has two parts. First there is
the motion due to the repulsive interaction between it and sur-
rounding cells. Superimposed on that is an advective velocity
field that can be specified externally. If the specified velocity
field has divergence then the source term for new cells needs to
be a function of the divergence in order to keep the cell density
constant. Applying the the continuity equation to the density of
granulation cells n:

∂n
∂t
+ ∇.(nu) = S − L (16)

where n is the density of the granules, S is the source term
and L is the loss term.

We want the average density of granulation cells to be con-
stant, n0. The loss term is just a function of the mean lifetime τ
of the cells and the mean density, and is hence also a constant:

L =
n0

τ
(17)

where n0 if the mean density and τ is the mean cell lifetime.
Rearranging gives the mean source term required:

S = n0

[
∇.u + 1

τ

]
· (18)

In order to maintain the distribution of granule lifetimes the
source term must always be positive. This limits the divergence
of the velocity field to ∇.u ≥ −1/τ. The velocity field can have
any other, divergence free field added to it. Once the cell cen-
tre motions are calculated, the images produced are processed
to produce a realistic looking image. First, each cell is repre-
sented by a Gaussian, with a size and amplitude a function of
its instantaneous size. The image produced is then filtered with
a Fourier filter in the same way as the raw granulation data. In
Fig. 6 the three stages of image production are shown. A movie
showing the simulated granulation in comparison to some
real MDI data may be found in balltrack_simdata.html
which is available with the electronic version of the article at
http://www.edpsciences.org/aa.

5. Results from test data

In Fig. 7 the velocity recovered using the Balltrack method
and LCT are compared with the true underlying velocity field.
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Fig. 6. The three stages of producing simulated granulation data. From left to right: the granulation cell centres, with tracks showing their
motion; modified with Gaussians; filtered with Fourier filter.

Fig. 7. Comparison of Balltrack and LCT recovered velocity fields. The first column is the underlying velocity field, the second the velocity field
recovered from the exact granule positions. The third and fourth columns are the velocity field obtained using balltrack and LCT respectively.
The graphs at the bottom show the correlation and error distribution between the recovered velocity fields and the underlying field. The units
in all graphs are pixels and pixels/timestep.
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Fig. 8. Comparison of Balltrack and LCT recovered velocity fields from real MDI data. The original data set consisted of 240 256 × 256 pixel
(approx. 150 × 150′′) frames taken at one minute intervals.

The velocity field obtained by smoothing the actual granule
motions is also displayed. In all cases the data was smoothed
to have 4 pixel spatial resolution and a smoothing time of 360
samples (equivalent to 6 h of MDI data). The test data was
made with a higher velocity range than true granulation data,
with typical bulk flow velocities reaching 0.2 pixels/s (equiva-
lent to 1500 m s−1 on MDI data) to test that the balltracker gave
a linear response over the full velocity range. The granule ve-
locity was also higher, with an rms value of around 2000 m s−1.

As can be seen from Fig. 7, the results from LCT and
balltrack are very similar to each other, with almost identi-
cal variance from the original data. Note that the contribu-
tion to the variance of the result from the actual granule mo-
tion is larger than that from the tracking methods, showing
that both these methods come close to the best possible re-
sult. The expected standard deviation of the velocity error on
the data derived directly from the simulated granule motions,
of about 0.015 pixels/timestep agrees well with the expected
value of the uncertainty, calculated as described in Sect. 3.1
of 0.017 pixels/timestep. Note also the linear velocity response
from both methods over the full range.

6. Application to real data

In order to evaluate the performance of the balltracking method
we took a 240 min sample of high resolution MDI data, and
compared the results from LCT and the balltracker. The data
was first derotated, filtered and normalised as described in

Sect. 2.2. LCT was then run on it as described in Potts et al.
2003, using 9×9 pixel subimages, separated by 4 pixels in each
direction, with the correlation weighted with a 2D Gaussian of
σ = 5 pixels, centred on the cell. The balltracking was then
performed with the following parameters: R̃s = 2, D̃p = 0.2,
Ãm = 0.6, T̃d = 1. The ball spacing was 3R̃s and the z damping
was increased by a factor of 10 with respect to the xy damp-
ing. The results were smoothed with a smoothing radius of
σ = 4 pixels. The Balltrack results were then calibrated by
using a sample of 25 9 × 9 pixel LCT subimages, chosen from
regions with high flow.

A comparison of the results is shown in Fig. 8. The first
graph shows the correlation between the x and y components
of the recovered velocity field. As can be seen the correla-
tion is good with R2 = 0.94, and the scaling is correct to
about 1%. The absolute differences in each velocity measure-
ment are shown in the histogram in the top right. These have
a standard deviation of 0.013 pixels/timestep, which is equiva-
lent to a velocity uncertainty of 92 m s−1, close to the maximum
resolution possible.

We then measured the velocity field of the large 6GB,
36 h data set described in Sect. 2.2 using balltrack with
the same parameters. Figure 9 shows the supergranular
boundaries obtained from by using a cell finding algorithm
on the velocity field from 3 h of MDI data. The dark lines
are the points where the flow converges to make an inter-
granular lane, with the darkness of the lane proportional
to the strength of convergence. An animation showing the
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Fig. 9. Supergranular boundaries obtained from a 5 h, high res-
olution MDI data set. The image is 384 × 1024 pixels (3.8 ×
10.2 arcmin). A movie showing the evolution of these lanes over
a 36 h period my be found in balltrack_realdata2.html
which is available with the electronic version of the article at
http://www.edpsciences.org/aa.

time evolution of the supergranules over the full 36 h sam-
ple may be found in balltrack_realdata2.html which
is available with the electronic version of the article at
http://www.edpsciences.org/aa. In the movie several
supergranules can be seen growing from a small, high di-
vergence feature to full sized cell which then start to break
up. This large data set took about 8 hours to calculate on a
moderate desktop PC (1GHz Pentium 3), including all filtering
and derotation. New data sets may be found on the web at
http://www.astro.gla.ac.uk/users/hugh/balltrack.

7. Conclusions

We have developed a motion tracking technique, that produces
results with the same accuracy as LCT, but is significantly more
efficient. This increase in speed gives the potential for real time
processing of large fields of data. This gives the capability to
recognise dynamic flow features, and, for example change ob-
serving instrument parameters in reaction to them. When the

R

Dd

r

θwθ

Fig. A.1. Ball on flat surface.

high cadence Solar-B data comes on line this type of algorithm
will be essential, allowing rapid searching of data sets for ve-
locity features.

Another advantage of the high efficiency of the code is
that it can be written in a high level programming language,
greatly reducing programming and debugging time. The code
used here was written in MATLAB, and in total is only
around 250 lines long. If you are interested in using the
code please contact the authors. More information is avail-
able on the web from the Astronomy and Astrophysics website,
http://www.edpsciences.org/aa, and from Potts (2003a).

The key to the high efficiency of the method is the implicit
predictive data searching provided by the momentum of the
trackers. This minimises the proportion of data used. For exam-
ple, for MDI data the optimum spacing of the balls is around
3 times their radius. This means that the proportion of data that
is used by the tracking algorithm is around π/9 ∼ 35%, as only
the data directly under the trackers is used. The data is also
only ever used once (twice if an intermediate frame is used).
This is in contrast to any correlation method that by its nature
uses all the data many times; for example, a single interpolation
cycle involves each data point 4 times, and many such cycles
are required.

The tracking accuracy obtained is close to the maximum
possible, with the limitation being largely a function of the
granule motion, rather than the tracking algorithm.

Although this method was designed for tracking photo-
spheric flows, it will work in any situation where there is a
characteristic spatial scale to features that need to be tracked.
Other examples where it may work well would include tracking
the motion of dense crowds of people people from live video,
tracking surface waves on the sea, clouds in the sky, or perhaps
in industrial control systems tracking the movement of granular
materials.
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Appendix A: Ball dynamics

A.1. Floating depth

In order to calculate the equations of motion for a floating
ball we consider a ball floating on a flat surface as shown in
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Fig. A.1. The ball has radius R and it penetrates the surface by
a maximum depth D.

To set the depth that the ball floats at we need to set the
force scaling factor k. To do this we first work out the force on
an annular element of the surface of width Rdθ that makes an
angle θ with the a vertical line through the centre of the sphere.
The radial penetration distance of this element through the sur-
face is di. Writing this in terms of the maximum penetration
depth Dp gives:

di = R − R − D
cos θ

· (A.1)

For simplicity we scale the penetration depth so that it is ex-
pressed as a fraction of the ball radius R, such that d̃i = di/R
and D̃p = D/R. Substituting these in gives:

d̃i = 1 − 1 − D̃p

cos θ
· (A.2)

We allocate a pressure Pi to this surface element proportional to
the penetration distance, and acting radially to the centre of the
sphere Pi = kd̃i. Note that this is not the pressure that would be
seen in the case of a real object floating in hydrostatic equilib-
rium, but is a convenient approximation which works well for
dynamic surfaces. The force from this annulus is just the verti-
cal component of the product of the pressure and its area Ai.

Ai = 2πR2 sin θdθ (A.3)

fi = Pi cos θ.Ai

= k

1 − 1 − D̃p

cos θ

 cos θ. 2πR2 sin θdθ. (A.4)

The total vertical force from all elements is obtained by inte-
grating around the submerged part of the ball up to the sur-
face piercing point at θw. This force must balance the gravity
force −mg:

−mg =
∫ θw

0
fidθ

= 2πkR

[
1
2

sin2 θ + (1 + D̃p) cos θ

]θw
0

. (A.5)

Substituting in cos θw = (R − D)/R = (1 − D̃p) and sin2 θ =
1 − cos2 θ and reducing gives:

mg = πkR2D2
p. (A.6)

This gives a value for the constant k of:

k =
mg

πR2D̃p
2
· (A.7)

For the case where the sphere is supported by discrete data
points with separation in the xy plane of dc, and scaling all
quantities to this spatial scale then R̃s = R/dc and each data
point represents unit area. The total vector force on the sphere
from the surface is then:

f b =
∑

i

kdi (A.8)

=
∑

i

mg

πR̃s
2
D̃p

2
d̃i. (A.9)

A.2. Ball motion

The motion of the balls is calculated entirely in velocity space.
In addition to the buoyancy force calculated above there is a
dissipative drag force −αu, proportional to the velocity. In each
time step δt the momentum p of a ball changes by the impulse
on it:

δP = δt( f b − mg − αu) (A.10)

or, in terms of velocity:

δu =
δt
m

( f b − mg − αu). (A.11)

If a ball is slowing down on a flat plane so the only force is the
frictional force −αu, its velocity will go as:

m
du
dt
= −αu ⇒ u = u0 exp

−αt
m
· (A.12)

Therefore the characteristic damping time is just:

T̃d =
m
α
· (A.13)

The maximum sustainable velocity change that can occur in a
timestep Ãm is equal to gravitational acceleration g.

Substituting these values in to Eq. (A.11) gives the full
equation of motion in terms of the parameters defined in
Sect. 2.4:

δu = δt

 Ãm

πD̃p
2
R̃s

2

∑
i

d̃i − Ãmĝ − u
T̃d

 (A.14)

where ĝ is the unit vector in the downwards or “gravity”
direction.
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