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Pronounced genetic structure in a highly mobile coral reef fish, Caesio cuning, in the 1	  
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The redbelly yellowtail fusilier, Caesio cuning, has a tropical Indo-West Pacific range 21	  
that straddles the Coral Triangle, a region of dynamic geological history and the highest 22	  
marine biodiversity on the planet. Previous genetic studies in the Coral Triangle indicate 23	  
the presence of regional limits to connectivity across this region. However, these have 24	  
focused almost exclusively on benthic reef dwelling species. Schooling, reef-associated 25	  
fusiliers (Perciformes: Caesionidae) account for a sizable portion of the annual reef catch 26	  
in the Coral Triangle, yet to date, there have been no in depth studies on the population 27	  
structure of fusiliers or other mid-water, reef-associated planktivores across this region. 28	  
We evaluated the genetic population structure of C. cuning using a 382bp segment of the 29	  
mitochondrial control region amplified from over 620 fish sampled from 33 localities 30	  
across the Philippines and Indonesia. Phylogeographic analysis showed that individuals 31	  
sampled from sites in western Sumatra belong to a distinct Indian-Ocean lineage, 32	  
resulting in pronounced regional structure between western Sumatra and the rest of the 33	  
Coral Triangle (ΦCT = 0.4796, p < 0.0043). We measured additional significant 34	  
population structure between central Southeast Asia and eastern Indonesia (ΦCT = 0.0450, 35	  
p < 0.0002). These data in conjunction with spatial analyses indicate that there are two 36	  
major lineages of C. cuning and at least three distinct management units across the 37	  
region. The location of genetic breaks as well as the distribution of divergent haplotypes 38	  
across our sampling range suggests that current oceanographic patterns could be 39	  
contributing to observed patterns of structure.  40	  
 41	  
 42	  
Keywords: connectivity, gene flow, isolation by distance, coral reef fish, artisanal 43	  
fisheries, Coral Triangle 44	  
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 45	  
Introduction 46	  

The concentration of marine biodiversity in the Coral Triangle poses both 47	  

biogeographical questions and management challenges. Straddling the Indo-Malay-48	  

Philippine Archipelago and extending eastward to the Solomon Islands, the Coral 49	  

Triangle is home to the highest diversity of marine organisms in the world (Briggs 1995; 50	  

Carpenter and Springer 2005; Veron et al. 2009). Coral reef habitat in this region is 51	  

extensive and complex, rivaling the Great Barrier Reef in area and spanning well over 52	  

25,000 islands. During the Pleistocene epoch, repeated glaciations caused radical changes 53	  

to the regional geography as the Sunda and Sahul Shelves rose above and fell below the 54	  

surface of the water (Voris 2000). The exposure of these shelves significantly narrowed 55	  

the gateway between the tropical Indian and Pacific Oceans, and sea level fluctuations 56	  

during this epoch have been implicated in numerous studies as a driver of regional 57	  

population differentiation and speciation across this region (Springer and Williams 1990; 58	  

Mcmillan and Palumbi 1995; Randall 1998; Lessios et al. 2001; Barber et al. 2006; 59	  

Crandall et al. 2008a,b; Vogler et al. 2008). At more recent timescales, oceanographic 60	  

processes have also been implicated in creating and maintaining genetic structure within 61	  

this region. In particular, the Mindanao and Halmahera eddies, created at the convergence 62	  

point of the Northern Equatorial Current and the New Guinea Coastal Current, have been 63	  

hypothesized to limit larval dispersal, and isolate populations across the Maluku sea 64	  

(Barber et al 2002, 2006, 2011; Kool et al. 2011). 65	  

Identifying regions of limited connectivity in species that span the Coral Triangle 66	  

can lead to insights into the stock structure of fisheries for management, as well as 67	  

mechanisms promoting lineage diversification in this region. Molecular techniques are 68	  
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particularly useful in highlighting regions where gene exchange does not occur 69	  

(Hedgecock et al. 2007). Recent reviews indicate the presence of several genetic breaks 70	  

shared by multiple species across this region, demonstrating that distinct geophysical 71	  

processes can promote population structure and even lineage diversification within in the 72	  

Coral Triangle (Carpenter et al. 2011, Barber et al 2011). However, to date the vast 73	  

majority of reef species showing pronounced genetic structure across the Coral Triangle 74	  

have been demersal, such as clams, stomatopods, seastars, gastropods and clownfish 75	  

(Barber et al. 2002, 2006; Crandall et al. 2008a,b; Deboer et al. 2008; Timm and 76	  

Kochzius 2008; Nuryanto and Kochzius 2009). In contrast, relatively understudied near-77	  

shore pelagics give mixed results. The round scad mackeral, Decapterus macrosoma, 78	  

show very little genetic structure (Borsa 2003), while its congener Decapterus russelli 79	  

shows up to three genetically structured populations (Rohfritsch and Borsa 2005).  80	  

Unfortunately the diversity that makes the Coral Triangle an area of evolutionary 81	  

and biogeographic interest is vulnerable. The region is a hotspot for coral reef threats 82	  

(Roberts et al. 2002; Nañola et al. 2011). As the human population in this region 83	  

increases annually by an estimated 1-2% (US Census Bureau 2011), anthropogenic 84	  

pressures on coral reef resources continue to rise. Coastal reefs are easily exploitable 85	  

resources, and reef fish and invertebrates are important sources of food and livelihood in 86	  

the coastal communities of Southeast Asia (McManus et al. 1992; McManus 1997). 87	  

Informed management of coral reef ecosystems is a priority for the conservation and 88	  

sustainability of coral reef resources in the coming decades.   89	  

The most accepted strategy for improving the biomass and abundance of reef 90	  

organisms is marine reserves (Roberts and Polunin 1991; Russ and Alcala 1996; 91	  
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Johannes 2002; Sale 2006). Because dispersive larvae are the primary means of 92	  

demographic and genetic connectivity among most populations, understanding patterns of 93	  

larval dispersal has been identified as one of the most critical gaps in developing effective 94	  

reserve networks (Sale et al. 2005). Although genetic connectivity is not equivalent to 95	  

demographic connectivity, genetic methods can be of use in guiding conservation 96	  

planning in marine ecosystems (Palumbi 2003). By identifying regions that are 97	  

genetically and demographically independent, conservation planners can partition large 98	  

marine ecosystems into smaller, more tractable management areas for which networks of 99	  

marine reserves can be designed (Green and Mous 2004). This approach has been 100	  

specifically proposed as a management mechanism in the Coral Triangle (Carpenter et al. 101	  

2011).  102	  

Schooling, reef-associated fusiliers (Perciformes: Caesionidae) are planktivores 103	  

found feeding at the reef face and account for a sizable portion of harvested reef species 104	  

in the Coral Triangle. They are caught via a variety of methods including hand-line, fish 105	  

traps, trawls, drive-in nets and gill nets (Carpenter 1988). In the Philippines alone, the 106	  

annual catch of caesionids in commercial and municipal fisheries is approximately 107	  

22,000 metric tons (BAS 2010), but given the artisanal nature of most reef fisheries in 108	  

this region, these catch data are likely greatly underestimated (Alcala and Russ 2002).  109	  

The red belly yellowtail fusilier, Caesio cuning (Bloch 1791), is a caesionid 110	  

commonly found in local markets across the Coral Triangle. It is a conspicuous mid-111	  

water member of Indo-Pacific reef ecosystems with a distribution that ranges from 112	  

southern Japan to northern Australia and from Vanuatu to Sri Lanka (Figure 1a). C. 113	  

cuning are schooling, broadcast spawners so there is no reason to suspect sex-biased 114	  
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dispersal, but beyond this, little is known about the larval ecology of C. cuning. The 115	  

closest relative with a known pelagic larval duration (PLD) is Pterocaesio chrysozona 116	  

with an estimated PLD of 37-47 days (Doherty et al. 1995), and there is no evidence to 117	  

suggest strong larval behavior such as homing (Leis and Carson-Ewart 2003) that may 118	  

limit dispersal potential. As adults, C. cuning are highly mobile members of the coral reef 119	  

ecosystem. While they can also be captured in trawls over soft bottom environments 120	  

(Carpenter 1988) the extent of their movement remains unknown. C. cuning and other 121	  

fusiliers have been observed sleeping in crevices and holes in the reef structure, however, 122	  

their level of fidelity to such shelter sites and individual reefs is unclear. The mobility of 123	  

C. cuning as pelagic larvae coupled with their dependence on reef structure for shelter 124	  

and undefined movement as adults suggests a varied spectrum of dispersal potential.  125	  

The purpose of this study is to assess regional genetic connectivity and lineage 126	  

diversification in Caesio cuning in order to address two questions: (1) are mid-water, 127	  

reef-associated planktivores impacted by the same barriers we see in demersal species or 128	  

do they exhibit the panmixia found in near-shore pelagics and (2) if limitations to 129	  

dispersal in C. cuning are present, can we identify distinct geographic stocks to aid in the 130	  

management of fusiliers?  131	  

 132	  

Methods 133	  

 We collected 630 Caesio cuning samples from fish markets or by spear while 134	  

SCUBA or skin diving from 33 localities in the Coral Triangle (Figure 1b). Only samples 135	  

that were confirmed as being caught on nearby reefs were collected from local markets. 136	  
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Tissue samples were taken from the pectoral or caudal fin base and preserved in 95% 137	  

ethanol.  138	  

 DNA amplification and sequencing reactions were conducted at Boston 139	  

University, the University of the Philippines Marine Science Institute, De La Salle 140	  

University and Udayana University. Whole genomic DNA was extracted using a 10% 141	  

Chelex (Biorad) solution (Walsh et al. 1991). A 382-bp region of the mitochondrial d-142	  

Loop was amplified via polymerase chain reaction (PCR) using the forward and reverse 143	  

primers CR-A and CR-E (Lee et al. 1995). PCR reactions were conducted in a 25 uL 144	  

reaction consisting of 1 uL DNA extraction, 25 µL reactions of 2.5 µL of 10x buffer, 2 145	  

µL MgCl2 (25 mM), 2.5 µL dNTPs (8 mM), 1.25 µL of each 10 uM primer, 1 µL of 146	  

template, and 0.625 U of AmpliTaq (Applied Biosystems). Manual hot start 147	  

thermocycling parameters were employed as follows: initial hold at 80°C, denaturation 148	  

94 °C (1min), main cycle 94°C (30 s), 50-52°C (30 s) and 72°C (40 s) for 39 cycles, then 149	  

a final extension of 72°C (7-10 min). 150	  

PCR products were electrophoresed on a 1% agarose gel and visualized with 151	  

ethidium bromide or SYBR® Green staining. Successful PCR reactions were 152	  

enzymatically prepared for sequencing by digesting 5ul of PCR product in 0.5 U of 153	  

Shrimp Alkaline Phosphatase and 5U of Exonuclease for 30 minutes at 37°C followed by 154	  

15 minutes at 80°C. Forward and reverse sequencing reactions were performed with Big 155	  

Dye terminator chemistry and run on an ABI 3730 automated DNA Sequencer (Applied 156	  

Biosystems). Forward and reverse sequences were proofread in Sequencher™ 4.7 (Gene 157	  

Codes Corporation, Ann Arbor, Michigan) and all resulting 383-bp fragments were 158	  

aligned with ClustalX v2.0.12. The online tookit FaBox (Villesen 2007) was used to 159	  
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reduce our final alignment to unique haplotypes and create an input file for the population 160	  

genetics data analysis program Arlequin 3.5.12 (Excoffier and Lischer 2010).  161	  

The species identity of our sampled haplotypes was confirmed with a neighbor-162	  

joining tree run in PAUP* (Swofford 2003) that included the three most closely related 163	  

sister species found across our sampling range as outgroups– Caesio lunaris, Caesio teres 164	  

and Caesio xanthonota. We examined the frequencies and phylogenetic relatedness of 165	  

haplotypes in our dataset with a median-joining minimum spanning tree generated in 166	  

NETWORK v4.6 (Bandelt et al. 1999).  167	  

For each locality we used DnaSP v5 (Librado and Rozas 2009) to calculate 168	  

standard genetic diversity indices and tested the null hypothesis of neutrality in the 169	  

mitochondrial control region using Fu’s FS and Fu and Li’s D* tests, with significance 170	  

determined by 1000 simulations of a neutral coalescent model. We employed the latter 171	  

two statistics to evaluate the potential effects of selection and demographic processes 172	  

such as population expansion on our data (Fu 1997).   173	  

To investigate the presence of barriers to dispersal and gene flow, we employed 174	  

both a priori and post hoc analyses. We first used examined population pairwise ΦST, and 175	  

performed an analysis of molecular variance (AMOVA) in Arlequin. For the AMOVA 176	  

analysis, we grouped sampling localities to test for hierarchical population structure 177	  

within our dataset following a priori hypotheses based on previously measured 178	  

phylogeographic breaks (Figure 3; Table 2) as follows: absence of genetic structure, 179	  

restricted gene flow east and west of the Makassar strait, a Sunda Shelf break at western 180	  

Sumatra, the Philippines vs. Indonesia, east vs. west of the Maluku Sea, and a break at 181	  

Cenderawasih Bay in Papua. All AMOVAs were run using sites with n ≥ 15 and 182	  
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employed the Tamura and Nei model of evolution, which was the model in Arlequin 183	  

most equivalent to the best model for our dataset determined by jModelTest v1.0 (Posada 184	  

2008; Guindon and Gascuel 2003). The significance of pairwise ΦST as well as among and 185	  

within population variance in the AMOVA framework was calculated using 30,000+ 186	  

random permutations of the dataset. The p values for multiple pairwise comparisons were 187	  

adjusted using Bonferroni as well as Benjamini and Hochberg’s (1995) false discovery 188	  

rate to reduce Type II error associated with the former method (Narum 2006).  189	  

In addition we employed a post hoc spatial analysis of the pairwise ΦST matrix 190	  

generated in Arlequin using the program BARRIER version 2.2 (Manni et al. 2004). 191	  

BARRIER characterizes the spatial relationship of sites from their GPS coordinates using 192	  

Voronoi tessellation and Delaunay triangulation and applies Monmonier’s maximum 193	  

difference algorithm to a matrix of genetic distances (ΦST in this case) to identify genetic 194	  

barriers across geographic space. We tested the robustness of barriers by resampling 195	  

individuals within populations with replacement using Excel and creating 100 196	  

bootstrapped replicates of our pairwise ΦST matrix in Arlequin.  197	  

 Since discrete genetic breaks can bias the results of analyses of Isolation by 198	  

Distance (IBD) and the presence of isolation by distance can generate false positives in 199	  

analyses of hierarchical structure (AMOVA) (Meirmans 2012), we employed partial 200	  

Mantel tests that controlled for both optimal AMOVA clusters and geographic distance 201	  

using the ‘vegan’ package for R (Oksanen et al. 2012; R Core Team 2012). Pairwise 202	  

genetic distances (ΦST) among localities with n > 15 were imported from Arlequin, and 203	  

negative pairwise ΦST values, a result of within population variance exceeding among 204	  

population variance, were set to zero. Our geographic distance matrix was generated 205	  
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using a previously developed Python script that calculates shortest distance over water 206	  

from the GPS points of sample sites (Etherington 2011) in ArcGIS 9.3. We created a 207	  

third distance matrix that reflected the hierarchical structure of our best AMOVA 208	  

grouping by using a zero to code for localities within the same group and a one to code 209	  

for localities in different groups. We first tested for significant correlations between 210	  

genetic and geographic distance, using AMOVA group membership as a covariate. We 211	  

then tested the correlation between genetic distance and AMOVA grouping, using 212	  

geographic distance as a covariate. Significance was tested with 10,000 random 213	  

permutations, and the relationships among distances and clusters were plotted.  214	  

 215	  

Results 216	  

 A total of 625 fish were successfully sequenced at the mitochondrial control 217	  

region, representing 20 study sites across Indonesia and 13 study sites in the Philippines. 218	  

When aligned, 129 sites over the amplified 382 bp were polymorphic. There were 393 219	  

haplotypes, 308 of which were unique to a single individual. The highest frequency 220	  

haplotype was shared by 18 individuals.  221	  

 222	  

Phylogenetic Relatedness 223	  

The unweighted mean pairwise difference between haplotypes in our minimum 224	  

spanning tree was 11.090 bp. All haplotypes from Medan and Padang, with the exception 225	  

of a single individual from Padang, fell within a divergent clade separated from all other 226	  

haplotypes by 8 mutational steps (Figure 2a,b). A single individual sampled at Makassar, 227	  

Sulawesi also fell within this divergent Indian Ocean clade. Regional clustering within 228	  
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the Pacific lineage shows some evidence that the distribution of haplotypes is non-229	  

random.  230	  

 231	  

Population Structure 232	  

 Haplotype diversity was high, measuring at or near 1 for all localities (Table 1). 233	  

Our two sites from Sumatra - Medan and Padang - had slightly lower nucleotide diversity 234	  

(0.0171 and 0.0169, respectively) compared to all other sites, which had nucleotide 235	  

diversities ranging from 0.0242 to 0.0356. While high haplotype diversity and low 236	  

nucleotide diversity could be an indication of recent population expansion, neither of 237	  

these sites had significantly negative values for Fu’s Fs (Table 1). Across all sampled 238	  

localities, there were only two significant values for Fu and Li’s D* which is more 239	  

sensitive to the effects of background selection (Fu 1997). However Fu’s FS, which is 240	  

more sensitive to signatures of demographic expansion and genetic hitchhiking, was 241	  

significantly negative at 11 of 13 sites in the Philippines and 14 of 20 sites in Indonesia, 242	  

indicating that the departures from neutrality can be ascribed to one of these two 243	  

processes (Fu 1997).  244	  

The results of our AMOVA analyses indicate significant genetic structuring in 245	  

Caesio cuning across the Coral Triangle (Table 2; ΦST = 0.1421, p < 0.00001). Grouping 246	  

sites east and west of the Makassar Strait accounted for a non-significant portion of the 247	  

genetic variance between groups measured at this locus whereas grouping our two 248	  

western Sumatra sites separately from all others accounted for 47.96% of the genetic 249	  

variance (ΦCT = 0.0258, p < 0.08554 vs. ΦCT = 0.4796, p < 0.00426). Since the variance 250	  

generated by spatially explicit, divergent clades can overwhelm signatures of structure 251	  
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within a dataset, we removed Medan and Padang from further AMOVA analyses. When 252	  

the remaining sites from the Pacific Clade were split into a Philippines’ group and an 253	  

Indonesian group, the ΦCT was significant but only explained 0.09% of the variance 254	  

between groups (ΦCT = 0.0091, p < 0.02246). Splitting sites east and west of the Maluku 255	  

Sea gave us our optimal partition and accounted for 4.50% of the variance between 256	  

groups (ΦCT = 0.0450, p < 0.00023). When this partition was shifted to Cenderawasih 257	  

Bay, it remained significant accounting for slightly less variance between groups (ΦCT = 258	  

0.0420, p < 0.00083). These patterns of genetic structure were echoed in the pairwise ΦST 259	  

values calculated for each pair of sampling localities (tables attached as supplemental). 260	  

Of the five tested breaks across the Coral Triangle, C. cuning exhibits two commonly 261	  

found in reef-associated, demersal species: a Sunda Shelf break at western Sumatra 262	  

(partition 2, Figure 3) and a break near the Maluku Sea in eastern Indonesia (partition 4, 263	  

Figure 3). 264	  

Spatial analysis of our pairwise ΦST matrix showed good agreement with our a 265	  

priori AMOVA results. Bootstrapping analyses reached their highest confidence values 266	  

when parameters were set to four barriers across the entire dataset (where n ≥ 15). A 267	  

barrier between the polygon space of Medan and Padang and all other sites is always the 268	  

first to be placed by BARRIER and carries unanimous bootstrap support (1.00) regardless 269	  

of number of designated barriers (Figure 4a). The second barrier is found in the region of 270	  

Halmahera and the Maluku Sea, which carries the next highest confidence values (0.78-271	  

0.80; Figure 4b). The third barrier was complex and found in the Philippines with the 272	  

most supported divisions between the southern Philippines and eastern Indonesia (0.49-273	  

0.60; Figure 4c). The fourth barrier divided the Philippines from central Indonesia, but 274	  
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was supported by less than half of our bootstrap replicates (0.44; Figure 4d). While the 275	  

third and fourth barriers partition more variance in our dataset, neither carries strong 276	  

enough bootstrap support to be viewed with any confidence.  277	  

 278	  

Isolation by Distance 279	  

When all localities (n ≥ 15) were included in our IBD analysis, points associated 280	  

with the western Sumatran sites Medan and Padang clustered separately from other sites 281	  

(Figure 5a). To avoid bias arising from their uniquely divergent lineage coupled with 282	  

their location on the edge of our sampling range, these two localities were excluded from 283	  

further IBD analyses. When we ran a Mantel test of only the localities within the Pacific 284	  

lineage, our results showed that there is a significant indication of IBD within this Pacific 285	  

lineage (Figure 5b, dashed line). We measured a Z of 8964.2023 and a correlation 286	  

coefficient (r) of 0.4216 with a corresponding p-value of less than 0.0001.  287	  

Despite the correlation between genetic and geographic distance, our plot 288	  

indicated that there were still sites nearly 3000 km apart within the Pacific lineage that 289	  

exhibited no measurable genetic differences. Since our AMOVA analyses indicate the 290	  

presence of hierarchical structure, we ran partial Mantel tests to determine the nature of 291	  

the significant correlation we measured. A partial Mantel test examining the correlation 292	  

of geographic distance to pairwise ΦST while accounting for our optimal AMOVA 293	  

clusters (central Indonesia and the Philippines vs. sites in the Bird’s Head region of 294	  

Papua) resulted in a non-significant correlation coefficient (r) of 0.1642 (p < 0.0657). A 295	  

partial Mantel test examining the correlation of pairwise ΦST to the location of sites 296	  

within one or the other of our two optimal sites while accounting for geographic distance 297	  
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resulted in an r of 0.5907 (p < 0.0002), indicating the hierarchical clustering of our sites 298	  

explains a significant percentage of the variance in our dataset while isolation by distance 299	  

does not.  This is further supported by a Mantel test of only sites within the Philippines 300	  

and central Indonesia cluster (we were unable to run a Mantel test on the eastern 301	  

Indonesia cluster since all pairwise ΦST = 0). We measured a Z of 2093.5389 and a 302	  

correlation coefficient (r) of 0.1258 with a non-significant p-value of 0.1306 (Figure 5b, 303	  

dotted line). 304	  

 305	  

Discussion 306	  

Patterns of genetic structure in a mid-water planktivore 307	  

 Hierarchical genetic analyses revealed two significant regions of genetic structure 308	  

across the Coral Triangle in the coral reef fish, Caesio cuning. A sharp genetic break was 309	  

observed across the Sunda Shelf barrier, echoing patterns reported from a diversity of 310	  

reef taxa including groupers, giant clams, crown-of-thorns seastars, damselfishes, 311	  

surgeonfish and snappers (Craig et al. 2007; Timm et al. 2008; Vogler et al. 2008; Drew 312	  

and Barber 2009; Eble et al. 2010; Gaither et al. 2010). Such population divergence 313	  

across the Sunda shelf is frequently attributed to historical vicariance between Pacific and 314	  

Indian Ocean populations during Pleistocene low sea level stands (e.g. Barber et al. 2000; 315	  

Rohfritsch and Borsa 2005; Deboer et al. 2008). In addition, significant departures from 316	  

neutrality, as measured by Fu’s FS, indicate the lingering effects of a Pleistocene 317	  

population expansion onto the Sunda and Sahul Shelves as sea levels rose during the Last 318	  

Glacial Maximum. Similar departures have been seen in every species examined in this 319	  

region so far (see Crandall et al. 2012). Shared phylogeographic patterns such as these 320	  
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result from broadly acting physical processes that shape genetic patterns in codistributed 321	  

taxa (Avise 2000). However, the maintenance of these patterns in modern times, despite 322	  

the lack of physical isolation, likely results from oceanographic currents or reproductive 323	  

isolation between the two lineages.  324	  

During the northeast monsoon, the Southern Equatorial Counter Current (SECC) 325	  

bifurcates off the coast of southern Sumatra (Schott and McCreary 2001). During the 326	  

southwest monsoon, this reverses, and where Sumatra meets Java, a southeastern flow 327	  

hits a northwesterly flowing current that is driven by the Indonesian Throughflow. Both 328	  

monsoonal patterns have the potential to create a barrier to continuous gene flow at the 329	  

site of bifurcation and conjunction (Figure 2c), potentially reinforcing isolation during 330	  

periods of lowered sea levels. Support for this hypothesis comes from a recent 331	  

quantitative analysis using biophysical models coupled with matrix projection (Kool et al. 332	  

2011) that predicts the genetic isolation of populations in the Andaman Sea and western 333	  

Sumatra.  334	  

 While studies of many reef organisms indicate divergence between Pacific and 335	  

Indian Ocean populations, only a few have sampled at a scale fine enough to illuminate 336	  

the extent and location of overlap between these divergent lineages (e.g. Barber et al. 337	  

2002, 2006; Crandall et al. 2008a,b; Deboer et al. 2008; Nuryanto and Kochzius 2009; 338	  

Gaither et al. 2011). The overlap between divergent Indian and Pacific Ocean lineages in 339	  

Caesio cuning is surprisingly small for such a potentially mobile fish. Haplotype 340	  

distributions from our minimum spanning tree indicate very limited gene flow between 341	  

the northern tip of Java and equatorial Sumatra – a distance of just over 800 km. No 342	  

landmass or geographical feature separates the waters of Padang (Sumatra) from the two 343	  
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closest sample sites on Java, Anyer and Kepulauan Seribu, yet only a single individual 344	  

unites the maternal lineages of Padang to these two sites (Figure 2c). While regional 345	  

oceanographic patterns could be limiting the genetic connectivity in C. cuning across this 346	  

region, it is notable that across the same geographic range, the anenomefish Amphiprion 347	  

ocellaris shows greater admixture of Indian and Pacific maternal lineages in the Java Sea 348	  

(Timm and Kochzius 2008), and anenomefishes have a larval dispersal period of only 8-349	  

12 days (Fautin and Allen 1992) and larvae exhibit natal homing (Jones et al. 2005). 350	  

Given the limited overlap of our two lineages, reproductive isolation between the clades 351	  

cannot be ruled out as a possible explanation for the absence of gene flow in this region. 352	  

 In addition to the phylogeographic break observed at the Sunda shelf, significant 353	  

limits to genetic exchange were also seen in eastern Indonesia. At first pass, a significant 354	  

correlation between genetic distance and over-water distance suggests that limits to gene 355	  

flow in this region might be due a stepping-stone model of gene flow in which nearby 356	  

localities exchange more migrants than they do with distant localities (Figure 5b). 357	  

However, our partial Mantel tests clearly show that this appearance of isolation-by-358	  

distance is actually an artifact of hierarchical structure between the two regions delimited 359	  

by BARRIER and AMOVA analysis (Figures 3 & 4; Table 2). 360	  

 This genetic structuring across the Maluku Sea mirrors genetic structure and even 361	  

pronounced phylogeographic breaks east and west of Halmahera found in two species of 362	  

giant clam (Deboer et al. 2008; Nuryanto and Kochzius 2009) and 14 species of 363	  

stomatopods (Barber et al. 2006; Barber et al. 2011), suggesting this region may be 364	  

important for lineage diversification. While Caesio cuning populations on either side of 365	  

Halmahera are not characterized by distinct clades as is seen in western Indonesia, the 366	  
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minimum spanning tree indicates some non-random, regional clustering of haplotypes. 367	  

Frequency differences among related haplotypes within the Pacific Ocean clade may be 368	  

caused by isolation facilitated by two eddies generated at the convergence point of the 369	  

Northern Equatorial Current and the New Guinea Coastal Current, the Mindanao Eddy 370	  

and the Halmahera Eddy (Figure 2c). The Halmahera Eddy has previously been 371	  

suggested as important for driving lineage diversification in the region of the Maluku Sea 372	  

(Barber et al 2002, 2006, 2011), however, both eddies direct a significant amount of flow 373	  

back into the Pacific Ocean, so both may be contributing to genetic isolation observed in 374	  

population genetic and computer modeling studies (Kool et al. 2011) conducted in this 375	  

region.  376	  

The recovery of multiple regions of significant genetic structure in Caesio cuning 377	  

is somewhat surprising because the high mobility potential of adults could result in 378	  

genetic admixture, such as the signal of secondary contact seen in migratory Decapterus 379	  

macrosoma (Borsa 2003). However, the concordance of our data to phylogeographic 380	  

patterns of demersal reef species with larval dispersal as well as to biophysical models of 381	  

larval dispersal (Kool et al. 2011) suggests that adult C. cuning are site-attached, and that 382	  

the major avenue of genetic connectivity in C. cuning is via larval dispersal. If adults are 383	  

truly site-attached, C. cuning would be dependent on larval dispersal to maintain gene 384	  

flow among populations across its range.  385	  

 386	  

Implications for management 387	  

As a significant artisanal fishery in the Coral Triangle, Caesio cuning is subject to 388	  

anthropogenic population declines. A study of Sumilon Island in the Philippines 389	  
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documented changes in reef fish density after protective management was removed for a 390	  

quarter of the island’s reefs. Alcala and Russ (1990) measured a 64% decrease in 391	  

caesionid density after an eighteen-month period of fishing by approximately 100 local 392	  

fishermen from an adjacent island using hand-paddled canoes. Given that artisanal 393	  

fishing of caesionids has been shown to cause precipitous drops in local abundance, a 394	  

better understanding of stock structure is particularly important for the management of C. 395	  

cuning.   396	  

The results of this study suggest that Caesio cuning populations in the Philippine 397	  

and Indonesian portions of the Coral Triangle should be best viewed as at least three 398	  

stocks. However, managing a reef fishery at this scale is complex because these stocks do 399	  

not conform to national borders. We saw no significant genetic divergence across sites in 400	  

the Philippines and central Indonesia that are nearly 3000 km apart (see pairwise ΦST 401	  

table, supplemental material). This connectivity is likely facilitated by the Indonesian 402	  

Throughflow, a strong current originating in the Western Pacific that flows between 403	  

Kalimantan and Sulawesi and empties into the Indian Ocean via three major 404	  

“chokepoints” – the Bali-Lombok Strait, the Ombai Strait and the Timor Passage (Figure 405	  

2c). Dispersal simulations have predicted a net flow of larvae north to south via this 406	  

pathway (Kool et al. 2011). The boundaries among stocks in western, central and eastern 407	  

Indonesia all occur within Indonesian national borders, which potentially simplifies 408	  

management planning and authority. However, the absence of genetic structure between 409	  

the Philippines and central Indonesia implies that the diversity and abundance of larvae 410	  

produced from Philippine reefs could have an important impact on the sustainability and 411	  

genetic diversity of reefs of central Indonesia. This interdependence between countries 412	  
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within the Coral Triangle emphasizes the importance of developing informed, 413	  

multinational management plans such as the Coral Triangle Initiative 414	  

(www.coraltriangleinitiative.org).  415	  

Future work should focus on fine scale sources and flow of larvae both within 416	  

regions of high genetic connectivity as well as areas of restricted gene flow in order to 417	  

ensure continual replenishment of coral reef resources. In the case of Caesio cuning, 418	  

particular attention should be given to areas with evidence of severely limited gene flow 419	  

such as the junction of Sumatra and Java. Determining the nature of the limited overlap 420	  

between the two mitochondrial clades will be key to the proper management design in 421	  

this region. Mitochondrial genetic studies do not have the power to detect reproductive 422	  

isolation with certainty, so future study should incorporate bi-parentally inherited nuclear 423	  

DNA. Multiple independent genetic markers such as microsatellites or SNPs could be 424	  

applied to extended sampling in this area to detect whether it is cryptic speciation or 425	  

barriers to genetic connectivity maintaining this break. It is particularly important to 426	  

identify whether gene flow is restricted, since intense overfishing in such a region could 427	  

result in temporary local extinctions. Until future research characterizes the nature and 428	  

direction of genetic connectivity across these regions, our understanding of the 429	  

population structure of C. cuning is limited to large scales. 430	  
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 637	  

 638	  

 639	  

Figures 640	  

 641	  

 642	  

Figure 1 a. The distribution of Caesio cuning. b. Inset. Sampling localities of this study: 643	  

Medan (1), Padang (2), Anyer (3), Seribu (4), Karimunjawa (5), Bali (6), Lombok (7), 644	  

Makassar (8), Selayar (9), Tawi Tawi (10), Honda Bay (11), Ulugan Bay (12), Bolinao 645	  

(13), Perez (14), Romblon (15), Sorsogon (16), Guimaras (17), Negros Occidental (18), 646	  

Negros Oriental (19), Balingasag (20), Dinagat (21), Davao (22), Manado (23), 647	  

Halmahera (24), Raja Ampat (25), Sorong (26), Fak Fak (27), Kaimana (28), Manokwari 648	  

(29), Windesi – Teluk Cenderawasi (30), Karei – Teluk Cenderawasi (31), Yapen (32), 649	  

Biak (33).  650	  

 651	  
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 652	  
Figure 2. a. Neighbor-joining analysis depicting the relationship of our sampled Caesio 653	  

cuning haplotypes to the three most closely related Caesio spp. in the region. b. 654	  

Minimum spanning tree for mitochondrial control region haplotypes of Caesio cuning. 655	  

Gray shading highlights the eastern Indonesian sites within the Pacific Clade, which 656	  

uncorrected pairwise ΦSTs and optimal AMOVA partitioning indicate are significantly 657	  

different from other sites in this clade. c. Geographic distribution of regional genetic 658	  

structure. Area of circles is relative to total number of individuals sampled at each site; 659	  
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sizes range from n=46 (Dinagat, Philippines) to n=7 (Pulau Seribu, Indonesia). Major 660	  

oceanographic features are labeled, including the Northern Equatorial Current (NEC), the 661	  

New Guinea Coastal Current (NGCC), the Halmahera Eddy (HE), Mindanao Eddy (ME) 662	  

and the Southern Equatorial Countercurrent (SECC).  663	  

 664	  

 665	  

 666	  

 667	  

 668	  
Figure 3. AMOVA Hypotheses Lines indicate the approximate locations of regional 669	  

genetic breaks found in the mtDNA of other well-sampled coral reef and near reef species 670	  

across the Coral Triangle (see Table 2). Solid lines indicate partitions tested with a 671	  

hierarchical analysis of molecular variance that included sites from both the Indian and 672	  

Pacific clades; dashed lines indicate partitions tested within the Pacific clade only.  673	  

 674	  

 675	  

 676	  

 677	  

 678	  

 679	  

 680	  

 681	  

 682	  
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 683	  

Figure 4. BARRIER Analysis Spatial analysis of sites (n ≥ 15) with four barriers 684	  

designated (results labelled a-d) and corresponding confidence values labeled in gray 685	  

(100 bootstrap replicates +1). Black polygons indicate Voronoi tessellation, gray lines 686	  

indicate Delaunay triangulation. Thickness of barriers is relative to bootstrap support.  687	  

 688	  

 689	  

 690	  
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 691	  

Figure 5. Isolation By Distance graphs Comparison of pairwise ΦST to geographic 692	  

distance for a. all sites with sample sizes greater than 15, showing clustering of Medan 693	  

and Padang associated with their spatial orientation and divergent clade, and b. Pacific 694	  

Clade only. Black dots are pairwise comparisons between sites belonging to different 695	  

AMOVA clusters, white dots are comparisons between sites within the Philippines and 696	  

central Indonesia cluster, and gray dots are comparisons between sites within the eastern 697	  

Indonesia cluster (all ΦST = 0). The dashed line is the regression for all sites in the Pacific 698	  

Clade (significant due to presence of hierarchical structure), and the dotted line is the 699	  

regression for only sites across the Philippines and central Indonesia (white dots only; 700	  

non-significant).  701	  

 702	  

 703	  

 704	  
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Tables 705	  

 706	  

Table 1. Molecular diversity indices for Caesio cuning: n = number of samples, hap = 707	  

number of unique haplotypes, h = haplotype diversity, Π = nucleotide diversity, θs  = 708	  

theta estimated using the number of segregating sites, and Fu’s FS and Fu and Li’s D* = 709	  

two neutrality statistics.    710	  

* denotes significant values of Fu’s Fs and Fu and Li’s D* (α=0.05). 	  711	  

	  712	  

Sampling Locality  n hap h Π θs FS D*  

1 Medan 20 12 0.921 0.017 6.765 -1.641 -1.118 
2 Padang 22 13 0.918 0.017 8.778 -2.168 -2.081* 
3 Anyer 22 19 0.983 0.026 10.973 -7.154* -0.322 
4 Seribu 7 7 1 0.024 9.796 -1.725 -0.565 
5 Karimunjawa 20 20 1 0.034 15.503 -10.469* -0.072 
6 Bali 26 22 0.982 0.026 10.482 -8.891* -0.239 
7 Lombok 16 15 0.992 0.029 11.452 -5.286* -0.481 
8 Makassar 18 18 1 0.027 13.665 -10.237* -0.993 
9 Selayar 20 15 0.942 0.025 10.429 -3.034 -0.794 

10 Tawi Tawi 17 13 0.963 0.027 10.944 -1.984 -0.644 
11 Honda Bay 26 23 0.991 0.028 11.793 -10.162* -0.349 
12 Ulugan Bay 21 19 0.991 0.026 10.562 -8.230* -0.047 
13 Bolinao 24 24 1 0.027 10.712 -16.723* -0.527 
14 Perez 25 24 0.997 0.026 11.388 -15.200* -0.415 
15 Romblon 17 17 1 0.028 10.649 -9.056* -0.237 
16 Sorsogon 19 18 0.994 0.025 10.872 -9.019* -0.369 
17 Negros Occidental 15 14 0.991 0.025 10.457 -5.352* -0.767 
18 Guimaras 26 25 0.997 0.027 12.579 -15.492* -1.044 
19 Negros Oriental 8 8 1 0.030 12.342 -1.933 -0.609 
20 Balingasag 21 19 0.990 0.024 11.952 -8.981* -0.446 
21 Dinagat 46 44 0.998 0.024 13.197 -43.847* -1.489 
22 Davao 9 9 1 0.025 10.302 -2.911 -0.533 
23 Manado 9 8 0.972 0.025 10.670 -1.157 -0.849 
24 Halmahera 12 11 0.985 0.029 9.934 -2.627 0.494 
25 Raja Ampat 13 10 0.949 0.026 10.312 -0.918 -0.633 
27 Fak Fak 11 11 1 0.023 10.584 -4.636* -0.797 
28 Sorong 14 14 1 0.025 9.434 -6.906* -0.409 
28 Kaimana 16 16 1 0.026 9.644 -8.432* 0.037 
29 Manokwari 8 8 1 0.031 12.727 -1.853 -0.436 
30 Windesi - Teluk Cenderwasi 20 19 0.995 0.026 10.429 -9.444* -0.591 
31 Karei - Teluk Cenderwasi 13 13 1 0.024 10.634 -6.112* -0.765 
32 Yapen  21 19 0.991 0.025 9.728 -8.330* -0.293 
33 Biak 43 36 0.991 0.024 13.174 -24.146* -1.963* 
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	  713	  

Table 2. AMOVA Summary. Unstandardized results of AMOVA tests with localities 714	  

where n ≥ 15 using 30,000+ random permutations. Tested partitions are labeled 1-5 715	  

corresponding to illustrations in Figure 3. The first three analyses include both lineages, 716	  

while the lower three analyses examine genetic structure within the Pacific Clade. K 717	  

values give the number of groupings tested. P-values ≤ 0.05 indicate significant statistics, 718	  

and optimal partitions for each group of analyses are bolded. The last column “e.g.” lists 719	  

pelagic and demersal species that exhibit phylogeographic breaks in mtDNA on which 720	  

our hypotheses for partitioning are based.  721	  

 Hypothesis Sites Statistic p % var e.g. 

 Both Clades (Indian & Pacific) 
 

k = 1 
 - - - - 

Decapterus macrosoma (Borsa 2003)  23 - - - - 
  ΦST 0.1421 0.00001 14.21 
 

k = 2; east vs. west of 
the Makassar Strait 

 ΦCT 0.0258 0.08554 2.58 
Decapterus russelli (Rofristch and Borsa 2009) 1 23 ΦSC 0.1312 0.00001 12.78 

  ΦST 0.1537 0.00001 84.64 
 

k = 2; Western Sumatra 
vs. all other sites 

 ΦCT 0.4796 0.00426 47.96 Dascyllus trimaculatus (Leray et al. 2010) 
Acanthaster planci (Vogler et al. 2008) 
Tridacna crocea (Deboer et al. 2008) 

Nerita albicilla (Crandall et al. 2008b) 
2 23 ΦSC 0.0189 0.00003 0.98 
  ΦST 0.4894 0.00001 51.06 
 Pacific Clade 
 

k = 2; Philippines vs. 
Indonesia 

 ΦCT 0.0091 0.02246 0.091 
Hippocampus kuda (Lourie et al. 2005) 3 21 ΦSC 0.0140 0.00136 1.39 

  ΦST 0.0229 0.00007 97.71 
 k = 2; central CT vs. 

eastern Indonesia at 
Halmahera 

 ΦCT 0.0450 0.00023 4.50 
Tridacna crocea (Deboer et al. 2008) 

Haptosquilla glyptocercus (Barber et al. 2006) 4 21 ΦSC 0.0026
0 

0.27264 0.25 
  ΦST 0.0474 0.00003 95.25 
 k = 2; central CT vs. 

eastern Indonesia at 
Cenderawasih Bay 

 ΦCT 0.0420 0.00083 4.20 
 
 

Haptosquilla pulchella (Barber et al. 2006) 
Tridacna maxima (Nuryanto and Kochzius 2009) 

Protoreaster nodosus (Crandall et al. 2008a) 
5 21 ΦSC 0.0056 0.11032 0.54 
  ΦST 0.0473 0.00003 95.26 
	  722	  
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