217 research outputs found

    High-accuracy sampling of saproxylic diversity indicators at regional scales with pheromones: The case of "Elater ferrugineus" (Coleoptera, Elateridae)

    Get PDF
    The rare beetle Elater ferrugineus was sampled at 47 sites in the county of Östergötland, Sweden by means of pheromone-baited traps to assess its value as an indicator species for hollow oak stands rich in rare saproxylic beetle species. In addition, Osmoderma eremita was also sampled with pheromone baits. These data were then compared against species survey data collected at the same sites by pitfall and window traps. Both species co-occur with many Red Listed saproxylic beetles, with E. ferrugineus being a somewhat better indicator for the rarest species. The conservation value of a site (measured as Red List points or number of Red Listed species) increased with the number of specimens of E. ferrugineus and O. eremita caught. Accuracy of sampling by means of pheromone trapping turned out to be radically different for the two model species. E. ferrugineus traps put out during July obtained full accuracy after only 6 days, whereas O. eremita traps needed to be out from early July to mid-August in order to obtain full accuracy with one trap per site. By using E. ferrugineus, or preferably both species, as indicator species, accuracy would increase and costs decrease for saproxylic biodiversity sampling, monitoring and identification of hotspots

    Challenging claims in the study of migratory birds and climate change

    Get PDF
    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (‘consensus view’) for a claim increased and between-researcher variability in support (‘expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies

    Energy cost and return for hunting in African wild dogs and Cheetahs

    Get PDF
    African wild dogs (Lycaon pictus) are reported to hunt with energetically costly long chase distances. We used high-resolution GPS and inertial technology to record 1,119 high-speed chases of all members of a pack of six adult African wild dogs in northern Botswana. Dogs performed multiple short, high-speed, mostly unsuccessful chases to capture prey, while cheetahs (Acinonyx jubatus) undertook even shorter, higher-speed hunts. We used an energy balance model to show that the energy return from group hunting and feeding substantially outweighs the cost of multiple short chases, which indicates that African wild dogs are more energetically robust than previously believed. Comparison with cheetah illustrates the trade-off between sheer athleticism and high individual kill rate characteristic of cheetahs, and the energetic robustness of frequent opportunistic group hunting and feeding by African wild dogs

    Computational and experimental druggability assessment of human DNA glycosylases

    Get PDF
    Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA

    Innate Sex Differences in the Timing of Spring Migration in a Songbird

    Get PDF
    In migrating animals protandry is the phenomenon whereby males of a species arrive at the breeding grounds earlier than females. In the present study we investigated the proximate causes of protandry in a migratory songbird, the northern wheatear Oenanthe oenanthe. Previous experiments with caged birds revealed that males and females show differentiated photoperiod-induced migratory habits. However, it remained open whether protandry would still occur without photoperiodic cues. In this study we kept captive first-year birds under constant photoperiod and environmental conditions in a “common garden” experiment. Male northern wheatears started their spring migratory activity earlier than females, even in the absence of environmental cues. This indicates that protandry in the northern wheatear has an endogenous basis with an innate earlier spring departure of males than females

    A statistical framework for genetic association studies of power curves in bird flight

    Get PDF
    How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution

    Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus

    Get PDF
    It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised

    The flight feather moult pattern of the bearded vulture (Gypaetus barbatus).

    Get PDF
    Moult is an extremely time-consuming and energy-demanding task for large birds. In addition, there is a trade-off between the time devoted to moulting and that invested in other activities such as breeding and/or territory exploration. Moreover, it takes a long time to grow a long feather in large birds, and large birds that need to fly while moulting cannot tolerate large gaps in the wing, but only one or two simultaneously growing feathers. As a consequence, large birds take several years to complete a full moult cycle, and they resume the moult process during suboptimal conditions. A clear example of this pattern is the Bearded Vulture (Gypaetus barbatus), which needs 2-3 years for changing all flight feathers. Here we describe the sequence, extent, and timing of moult of 124 Bearded Vultures in detail for the first time. We found that extent and timing of flight feather moult was different between age classes. Subadults (from 3rd to 5th calendar year) started moult, on average, in early March, whereas adults only started moult, on average, in late April, possibly due to breeding requirements. Second calendar year individuals delayed onset of moult until the middle of May. In general, the moult lasted until November, and although adults started to moult later than subadults, they moulted more feathers. Subadults needed 3 years for moulting all flight feathers, whereas adults normally completed it in 2 years
    corecore